1. |
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J/OL]. Eye Vis (Lond), 2015, 2: 17[2015-09-30]. https://pubmed.ncbi.nlm.nih.gov/26605370/. DOI: 10.1186/s40662-015-0026-2.
|
2. |
Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications[J]. J Clin Endocrinol Metab, 2009, 94(9): 3171-3182. DOI: 10.1210/jc.2008-2534.
|
3. |
Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50. DOI: 10.2478/v10153-010-0036-8.
|
4. |
Adamis AP. Is diabetic retinopathy an inflammatory disease?[J]. Br J Ophthalmol, 2002, 86(4): 363-365. DOI: 10.1136/bjo.86.4.363.
|
5. |
Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression[J]. FASEB J, 2002, 16(3): 438-440. DOI: 10.1096/fj.01-0707fje.
|
6. |
Zheng L, Howell SJ, Hatala DA, et al. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy[J]. Diabetes, 2007, 56(2): 337-345. DOI: 10.2337/db06-0789.
|
7. |
刘巨平, 李筱荣. 糖尿病视网膜病变: 一种非可控性炎症[J]. 中华实验眼科杂志, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019.Liu JP, Li XR. Diabetic retinopathy: a nonresolving inflammation[J]. Chin J Exp Ophthalmol, 2014, 32(1): 94-96. DOI: 10.3760/cma.j.issn.2095-0160.2014.01.019.
|
8. |
Taub DD. Chemokine-leukocyte interactions. The voodoo that they do so well[J]. Cytokine & Growth Factor Rev, 1996, 7(4): 355-376. DOI: 10.1016/s1359-6101(97)89237-4.
|
9. |
Matsushima K, Larsen CG, DuBois GC, et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line[J]. J Exp Med, 1989, 169(4): 1485-1490. DOI: 10.1084/jem.169.4.1485.
|
10. |
Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines[J]. Cytokine Growth Factor Rev, 1999, 10(1): 61-86. DOI: 10.1016/s1359-6101(99)00005-2.
|
11. |
Yoshimura T, Leonard EJ. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes[J]. J Immunol, 1990, 145(1): 292-297.
|
12. |
Weber KS, Klickstein LB, Weber C. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains[J]. Mol Biol Cell, 1999, 10(4): 861-873. DOI: 10.1091/mbc.10.4.861.
|
13. |
Jiang Y, Beller DI, Frendl G, et al. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes[J]. J Immunol, 1992, 148(8): 2423-2348.
|
14. |
Leonard EJ, Skeel A, Yoshimura T. Biological aspects of monocyte chemoattractant protein-1 (MCP-1)[J]. Adv Exp Med Biol, 1991, 305: 57-64. DOI: 10.1007/978-1-4684-6009-4_7.
|
15. |
Craig MJ, Loberg RD. CCL2 (monocyte chemoattractant protein-1) in cancer bone metastases[J]. Cancer Metastasis Rev, 2006, 25(4): 611-619. DOI: 10.1007/s10555-006-9027-x.
|
16. |
Wang Q, Ren J, Morgan S, et al. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm[J/OL]. PLoS One, 2014, 9(3): e92053[2014-03-14]. https://pubmed.ncbi.nlm.nih.gov/24632850/. DOI: 10.1371/journal.pone.0092053.
|
17. |
Schepers A, Eefting D, Bonta PI, et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2006, 26(9): 2063-2069. DOI: 10.1161/01.ATV.0000235694.69719.e2.
|
18. |
Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas[J]. Int J Oncol, 2003, 22(4): 773-778.
|
19. |
O'Hayre M, Salanga CL, Handel TM, et al. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment[J]. Biochem J, 2008, 409(3): 635-649. DOI: 10.1042/BJ20071493.
|
20. |
Yamamoto T, Eckes B, Mauch C, et al. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop[J]. J Immunol, 2000, 164(12): 6174-6179. DOI: 10.4049/jimmunol.164.12.6174.
|
21. |
Takaishi H, Taniguchi T, Takahashi A, et al. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells[J]. Biochem Biophys Res Commun, 2003, 305(1): 122-128. DOI: 10.1016/s0006-291x(03)00712-5.
|
22. |
Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease[J]. Curr Pharm Des, 2008, 14(10): 979-986. DOI: 10.2174/138161208784139684.
|
23. |
Crane IJ, Wallace CA, McKillop-Smith S, et al. Control of chemokine production at the blood-retina barrier[J]. Immunology, 2000, 101(3): 426-433. DOI: 10.1046/j.0019-2805.2000.01105.x.
|
24. |
Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm (Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1.
|
25. |
陈慷, 胡世兴, 邓新国, 等. 单核细胞趋化蛋白-1在早期糖尿病大鼠视网膜中的表达及意义[J]. 眼科研究, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007.Chen K, Hu SX, Deng XG, et al. Expression of monocyte chemoattractant protein-1 in retina of early diabetic rats and its significance[J]. Chin Ophthal Res, 2005, 23(1): 23-25. DOI: 10.3760/cma.j.issn.2095-0160.2005.01.007.
|
26. |
Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. DOI: 10.1016/j.preteyeres.2006.05.003.
|
27. |
Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group[J]. Diabetes, 1998, 47(5): 815-820. DOI: 10.2337/diabetes.47.5.815.
|
28. |
Harada C, Okumura A, Namekata K, et al. Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy[J]. Diabetes Res Clin Pract, 2006, 74(3): 249-256. DOI: 10.1016/j.diabres.2006.04.017.
|
29. |
Carr MW, Roth SJ, Luther E, et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant[J]. Proc Natl Acad Sci USA, 1994, 91(9): 3652-3656. DOI: 10.1073/pnas.91.9.3652.
|
30. |
Wang T, Dai H, Wan N, et al. The role for monocyte chemoattractant protein-1 in the generation and function of memory CD8+ T cells[J]. J Immunol, 2008, 180(5): 2886-2893. DOI: 10.4049/jimmunol.180.5.2886.
|
31. |
Kijlstra A. Cytokines: their role in uveal disease[J]. Eye (Lond), 1997, 11(Pt 2): 200-205. DOI: 10.1038/eye.1997.51.
|
32. |
Elner VM, Burnstine MA, Strieter RM, et al. Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses[J]. Exp Eye Res, 1997, 65(6): 781-789. DOI: 10.1006/exer.1997.0380.
|
33. |
Bian ZM, Elner VM, Yoshida A, et al. Signaling pathways for glycated human serum albumin-induced IL-8 and MCP-1 secretion in human RPE cells[J]. Invest Ophthalmol Vis Sci, 2001, 42(7): 1660-1668.
|
34. |
Schreiber RC, Krivacic K, Kirby B, et al. Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury[J]. Neuroreport, 2001, 12(3): 601-606. DOI: 10.1097/00001756-200103050-00034.
|
35. |
Che X, Ye W, Panga L, et al. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice[J]. Brain Res, 2001, 902(2): 171-177. DOI: 10.1016/s0006-8993(01)02328-9.
|
36. |
Dong N, Li X, Xiao L, et al. Upregulation of retinal neuronal MCP-1 in the rodent model of diabetic retinopathy and its function in vitro[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7567-7575. DOI: 10.1167/iovs.12-9446.
|
37. |
Jiang Z, Hennein L, Xu Y, et al. Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabet Med, 2016, 33(1): 84-90. DOI: 10.1111/dme.12804.
|
38. |
Dong N, Xu B, Chu L, et al. Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema[J/OL]. PLoS One, 2015, 10(4): e0125329[2015-04-29]. https://pubmed.ncbi.nlm.nih.gov/25923230/. DOI: 10.1371/journal.pone.0125329.
|
39. |
Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037.
|
40. |
Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species[J]. Antioxid Redox Signal, 2011, 15(5): 1271-1284. DOI: 10.1089/ars.2011.3906.
|
41. |
Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes[J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218. DOI: 10.1167/iovs.04-1340.
|
42. |
Liu H, Tang J, Du Y, et al. Retinylamine benefits early diabetic retinopathy in mice[J]. J Biol Chem, 2015, 290(35): 21568-21579. DOI: 10.1074/jbc.M115.655555.
|
43. |
González-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins[J]. Prog Biophys Mol Biol, 2003, 81(1): 1-44. DOI: 10.1016/s0079-6107(02)00037-8.
|
44. |
Tonade D, Liu H, Palczewski K, et al. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes[J]. Diabetologia, 2017, 60(10): 2111-2120. DOI: 10.1007/s00125-017-4381-5.
|
45. |
Rangasamy S, McGuire PG, Franco Nitta C, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J/OL]. PLoS One, 2014, 9(10): e108508[2014-08-20]. https://pubmed.ncbi.nlm.nih.gov/25329075/. DOI: 10.1371/journal.pone.0108508.
|
46. |
Harhaj NS, Felinski EA, Wolpert EB, et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 5106-5115. DOI: 10.1167/iovs.06-0322.
|
47. |
Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152. DOI: 10.1016/S0002-9440(10)63952-1.
|
48. |
Navaratna D, McGuire PG, Menicucci G, et al. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes[J]. Diabetes, 2007, 56(9): 2380-2387. DOI: 10.2337/db06-1694.
|
49. |
Sassa Y, Yoshida S, Ishikawa K, et al. The kinetics of VEGF and MCP-1 in the second vitrectomy cases with proliferative diabetic retinopathy[J]. Eye (Lond), 2016, 30(5): 746-753. DOI: 10.1038/eye.2016.20.
|
50. |
Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy[J]. Am J Pathol, 1991, 139(1): 81-100.
|
51. |
Matsumoto Y, Takahashi M, Ogata M. Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy[J]. Jpn J Ophthalmol, 2002, 46(4): 406-412. DOI: 10.1016/s0021-5155(02)00508-7.
|
52. |
Al Shahi H, Shimada K, Miyauchi K, et al. Elevated circulating levels of inflammatory markers in patients with acute coronary syndrome[J/OL]. Int J Vasc Med, 2015, 2015: 805375[2015-08-04]. https://pubmed.ncbi.nlm.nih.gov/26504600/. DOI: 10.1155/2015/805375.
|
53. |
Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565. DOI: 10.2337/diabetes.54.5.1559.
|
54. |
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726): 1314-1318. DOI: 10.1126/science.1110647.
|
55. |
Dong N, Chang L, Wang B, et al. Retinal neuronal MCP-1 induced by AGEs stimulates TNF-alpha expression in rat microglia via p38, ERK, and NF-kappaB pathways[J]. Mol Vis, 2014, 20: 616-628.
|
56. |
Magnus T, Chan A, Linker RA, et al. Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system[J]. J Neuropathol Exp Neurol, 2002, 61(9): 760-766. DOI: 10.1093/jnen/61.9.760.
|
57. |
Wang AL, Yu AC, He QH, et al. AGEs mediated expression and secretion of TNF alpha in rat retinal microglia[J]. Exp Eye Res, 2007, 84(5): 905-913. DOI: 10.1016/j.exer.2007.01.011.
|