• Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China;
Shen Yin, Email: yinshen@whu.edu.cn
Export PDF Favorites Scan Get Citation

Objective To explore the light sensitivity and kinetic of the new optogenetics tools Channelrhodopsin-XXM2.0 (XXM2.0) and Channelrhodopsin-PsCatCh2.0 (PsCatCh2.0), and analyze whether they could be used to restore the visual function by optogenetics.Methods Molecular biology techniques were used to link the gene fragments of XXM2.0 and PsCatCh2.0 to the vector pCIG(c)-msFoxn3 containing ampicillin resistant screening gene and reporter gene to form new plasmid pCIG(c)-msFoxn3-XXM2.0 and pCIG(c)-msFoxn3-PsCatCh2.0. The constructed plasmids were transfected into HEK 293T cells, and light responses were recorded in the whole cell mode with the HEKA patch clamp system. The photocurrent was recorded under three light intensity included 2.7×1016, 4.7×1015, and 6.4×1014 photons/(cm2·s). And then, XXM2.0 and PsCatCh2.0 were stimulated with 2.7×1016 photons/(cm2·s) and fully recovered. The opening and closing time constants were analyzed with Clampfit 10.6 software. At the same light intensity, photocurrents of XXM2.0 and PsCatCh2.0 were recorded by the light pulse stimulating of 2-32 Hz. The current attenuation was analyzed at long intervals of 4000 ms and short intervals of 200 ms after repeated stimulation. Comparisons between groups were performed by independent samples t test.Results Restriction endonuclease sites of EcoRⅠ and EcoRⅤ were successfully introduced at XXM2.0 and PsCatCh2.0 sequences. When the digestion was completed, they were ligated by T4 DNA ligase to construct new plasmids pCIG(c)-msFoxn3-XXM2.0 and pCIG (c)-msFoxn3-PsCatCh2.0, and then transfected on HEK 293T cells. The light intensity dependence was showed in XXM2.0 and PsCatCh2.0. The greater light intensity was accompanied by the greater photocurrent. Under the light intensity 6.4×1014 photons/(cm2·s) below the retinal safety threshold, large photocurrent was still generated in XXM2.0 and PsCatCh2.0 with 92.8±142.0 and 13.9±5.6 pA (t=1.24, 1.24; P=0.28, 0.29). The opening time constants of XXM2.0 and PsCatCh2.0 were 23.9±6.7 and 2.4±0.8 ms, and the closing time constants were 5803.0±568.2 and 219.9±25.6 ms. Compared with PsCatCh2.0, the opening and closing time constant of XXM2.0 were both larger than PsCatCh2.0. The differences were statistically significant (t=7.10, 31.60; P=0.00, 0.00). In terms of response frequency, XXM2.0 and PsCatCh2.0 could follow to 32 Hz high-frequency pulsed light stimulation, and all could respond to repeated light stimulation at a long (4000 ms) and a short time (200 ms) interval with the small current decay rate.Conclusion XXM2.0 and PsCatCh2.0 could be activated under light intensity with safety for the retina, and could respond to high frequency (at least 32 Hz) pulsed light stimuli with low current attenuation, which could meet the characteristics of opsins required to restore the visual function by optogenetics.

Citation: Chen Fei, Shen Yin. Feasibility analysis of new optogenetics tools Channelrhodopsin-XXM2.0 and Channelrhodopsin-PsCatCh2.0 to restore visual function. Chinese Journal of Ocular Fundus Diseases, 2020, 36(11): 838-845. doi: 10.3760/cma.j.cn511434-20200529-00253 Copy

Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved

  • Previous Article

    Manifestations of acute regional occult outer retinopathy in full-field electroretinogram
  • Next Article

    Effects of Krüppel-like factor 7 on the survival of retinal ganglion cells and electroretinogram after retinal ischemia-reperfusion injury