- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
Leber hereditary optic neuropathy (LHON) is a blinding disease caused by mutations in mitochondrial DNA. It is a classic disease model for studying mitochondrial abnormalities. Its main mutation sites are m11778G.A, m.3460G.A and m.14484T.C. LHON cell models are mainly produced by lymphoblasts, fibroblasts, cell hybrids and induced pluripotent stem cells, while LHON animal models are mainly mice, which are produced by rotenone and ND4 mutants. Although the research on the LHON model has achieved good results, there are still many difficulties in constructing an ideal experimental model, which severely limit the exploring to the pathogenesis and therapeutic drugs of LHON. A detailed understanding of the application and characteristics of existing models in LHON will help improve experimental design and construct new models.
Citation: Yang Xueying, Chen Changzheng. Research progress in cell and animal models of Leber hereditary optic neuropathy. Chinese Journal of Ocular Fundus Diseases, 2021, 37(10): 825-830. doi: 10.3760/cma.j.cn511434-20210207-00073 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Farrar GJ, Chadderton N, Kenna PF, et al. Mitochondrial disorders: aetiologies, models systems, and candidate therapies[J]. Trends Genet, 2013, 29(8): 488-497. DOI: 10.1016/j.tig.2013.05.005. |
2. | Jankauskaitė E, Bartnik E, Kodroń A. Investigating Leber's hereditary optic neuropathy: cell models and future perspectives[J]. Mitochondrion, 2017, 32: 19-26. DOI: 10.1016/j.mito.2016.11.006. |
3. | Giordano L, Deceglie S, d'Adamo P, et al. Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways[J/OL]. Cell Death Dis, 2015, 6(12): e2021[2015-12-17].https://pubmed.ncbi.nlm.nih.gov/26673666/. DOI: 10.1038/cddis.2015.364. |
4. | Caporali L, Maresca A, Capristo M, et al. Incomplete penetrance in mitochondrial optic neuropathies[J]. Mitochondrion, 2017, 36: 130-137. DOI: 10.1016/j.mito.2017.07.004. |
5. | 杨硕, 刘磊, 裴晗, 等. 腺相关病毒2-ND4基因转染细胞线粒体的研究[J]. 中华实验眼科杂志, 2014, 32(8): 693-695. DOI: 10.3760/cma.j.issn.2096-0160.2014.08.005.Yang S, Liu L, Pei H, et al. Study on transfection of adeno associated virus 2-ND4 gene into mitochondria[J]. Chin J Exp Ophthalmol, 2014, 32(8): 693-695. DOI: 10.3760/cma.j.issn.2096-0160.2014.08.005. |
6. | Wang C, Li D, Zhang L, et al. RNA sequencing analyses of gene expression during epstein-barr virus infection of primary B lymphocytes[J/OL]. J Virol, 2019, 93(13): e00226-19[2016-06-14]. https://pubmed.ncbi.nlm.nih.gov/31019051/. DOI: 10.1128/JVI.00226-19. |
7. | Van Bergen NJ, Crowston JG, Craig JE, et al. Measurement of systemic mitochondrial function in advanced primary open-angle glaucoma and Leber hereditary optic neuropathy[J/OL]. PLoS One, 2015, 10(10): e140919[2015-10-23]. https://pubmed.ncbi.nlm.nih.gov/26496696/. DOI: 10.1371/journal.pone.0140919. |
8. | Falabella M, Forte E, Magnifico MC, et al. Evidence for detrimental cross interactions between reactive oxygen and nitrogen species in Leber's hereditary optic neuropathy cells[J/OL]. Oxid Med Cell Longev, 2016, 2016: 3187560[2015-12-31]. https://pubmed.ncbi.nlm.nih.gov/26881022/. DOI: 10.1155/2016/3187560. |
9. | Brown MD, Trounce IA, Jun AS, et al. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation[J]. J Biol Chem, 2000, 275(51): 39831-39836. DOI: 10.1074/jbc.M006476200. |
10. | Chen C, Chen Y, Guan MX. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation[J]. Protein Cell, 2015, 6(12): 862-870. DOI: 10.1007/s13238-015-0175-z. |
11. | Jiang P, Jin X, Peng Y, et al. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation[J]. Hum Mol Genet, 2016, 25(3): 584-596. DOI: 10.1093/hmg/ddv498. |
12. | Jankauskaitė E, Ambroziak AM, Hajieva P, et al. Testosterone increases apoptotic cell death and decreases mitophagy in Leber's hereditary optic neuropathy cells[J]. J Appl Genet, 2020, 61(2): 195-203. DOI: 10.1007/s13353-020-00550-y. |
13. | Toritsuka M, Makinodan M, Yamauchi T, et al. Altered gene expression in lymphoblastoid cell lines after subculture[J]. In Vitro Cell Dev Biol Anim, 2018, 54(7): 523-527. DOI: 10.1007/s11626-018-0267-1. |
14. | Pereira SP, Deus CM, Serafim TL, et al. Metabolic and phenotypic characterization of human skin fibroblasts after forcing oxidative capacity[J]. Toxicol Sci, 2018, 164(1): 191-204. DOI: 10.1093/toxsci/kfy068. |
15. | Tun AW, Chaiyarit S, Kaewsutthi S, et al. Profiling the mitochondrial proteome of Leber's hereditary optic neuropathy (LHON) in Thailand: down-regulation of bioenergetics and mitochondrial protein quality control pathways in fibroblasts with the 11778G>A mutation[J/OL]. PLoS One, 2014, 9(9): e106779[2014-09-12].https://pubmed.ncbi.nlm.nih.gov/25215595/. DOI: 10.1371/journal.pone.0106779. |
16. | Zhou L, Chan JCY, Chupin S, et al. Increased protein S-glutathionylation in Leber's hereditary optic neuropathy (LHON)[J/OL]. Int J Mol Sci, 2020, 21(8): 3027[2020-04-24]. https://pubmed.ncbi.nlm.nih.gov/32344771/. DOI: 10.3390/ijms21083027. |
17. | Uittenbogaard M, Brantner CA, Fang Z, et al. The m. 11778 A>G variant associated with the coexistence of Leber's hereditary optic neuropathy and multiple sclerosis-like illness dysregulates the metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis[J]. Mitochondrion, 2019, 46: 187-194. DOI: 10.1016/j.mito.2018.06.001. |
18. | Catarino CB, Ahting U, Gusic M, et al. Characterization of a Leber's hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m. 11778G>A and m. 14484T>C of the mitochondrial DNA[J]. Mitochondrion, 2017, 36: 15-20. DOI: 10.1016/j.mito.2016.10.002. |
19. | Yu-Wai-Man P, Soiferman D, Moore DG, et al. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy[J]. Mitochondrion, 2017, 36: 36-42. DOI: 10.1016/j.mito.2017.01.004. |
20. | Chao de la Barca JM, Simard G, Amati-Bonneau P, et al. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress[J]. Brain, 2016, 139(11): 2864-2876. DOI: 10.1093/brain/aww222. |
21. | Hu SY, Zhuang QQ, Qiu Y, et al. Cell models and drug discovery for mitochondrial diseases[J]. J Zhejiang Univ Sci B, 2019, 20(5): 449-456. DOI: 10.1631/jzus.B1900196. |
22. | Bacman SR, Nissanka N, Moraes CT. Cybrid technology[J]. Methods Cell Biol, 2020, 155: 415-439. DOI: 10.1016/bs.mcb.2019.11.025. |
23. | Wilkins HM, Carl SM, Swerdlow RH. Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies[J]. Redox Biol, 2014, 2: 619-631. DOI: 10.1016/j.redox.2014.03.006. |
24. | Ji Y, Zhang J, Yu J, et al. Contribution of mitochondrial ND13394T>C mutation to the phenotypic manifestation of Leber's hereditary optic neuropathy[J]. Hum Mol Genet, 2019, 28(9): 1515-1529. DOI: 10.1093/hmg/ddy450. |
25. | Zhang J, Jiang P, Jin X, et al. Leber's hereditary optic neuropathy caused by the homoplasmic ND1m. 3635G>A mutation in nine Han Chinese families[J]. Mitochondrion, 2014, 18: 18-26. DOI: 10.1016/j.mito.2014.08.008. |
26. | Zhang J, Ji Y, Lu Y, et al. Leber's hereditary optic neuropathy (LHON)-associated ND5 12338T >C mutation altered the assembly and function of complex Ⅰ, apoptosis and mitophagy[J]. Hum Mol Genet, 2018, 27(11): 1999-2011. DOI: 10.1093/hmg/ddy107. |
27. | Ji Y, Zhang J, Lu Y, et al. Complex Ⅰ mutations synergize to worsen the phenotypic expression of Leber's hereditary optic neuropathy[J]. J Biol Chem, 2020, 295(38): 13224-13238. DOI: 10.1074/jbc.RA120.014603. |
28. | Sharma LK, Tiwari M, Rai NK, et al. Mitophagy activation repairs Leber's hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival[J]. Hum Mol Genet, 2019, 28(3): 422-433. DOI: 10.1093/hmg/ddy354. |
29. | Zhang J, Ji Y, Liu X, et al. Leber's hereditary optic neuropathy caused by a mutation in mitochondrial tRNA(Thr) in eight Chinese pedigrees[J]. Mitochondrion, 2018, 42: 84-91. DOI: 10.1016/j.mito.2017.12.003. |
30. | Hudson G, Carelli V, Spruijt L, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background[J]. Am J Hum Genet, 2007, 81(2): 228-233. DOI: 10.1086/519394. |
31. | Caporali L, Iommarini L, La Morgia C, et al. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy[J/OL]. PLoS Genet, 2018, 14(2): e1007210[2018-02-14].https://pubmed.ncbi.nlm.nih.gov/29444077/. DOI: 10.1371/journal.pgen.1007210. |
32. | López-Gallardo E, Emperador S, Hernández-Ainsa C, et al. Food derived respiratory complex Ⅰinhibitors modify the effect of Leber hereditary optic neuropathy mutations[J]. Food Chem Toxicol, 2018, 120: 89-97. DOI: 10.1016/j.fct.2018.07.014. |
33. | Datta S, Baudouin C, Brignole-Baudouin F, et al. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2406-2412. DOI: 10.1167/iovs.16-20903. |
34. | Emperador S, López-Gallardo E, Hernández-Ainsa C, et al. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation[J/OL]. Orphanet J Rare Dis, 2019, 14(1): 150[2019-06-21].https://pubmed.ncbi.nlm.nih.gov/31226990/. DOI: 10.1186/s13023-019-1128-z. |
35. | Pisano A, Preziuso C, Iommarini L, et al. Targeting estrogen receptor beta as preventive therapeutic strategy for Leber's hereditary optic neuropathy[J]. Hum Mol Genet, 2015, 24(24): 6921-6931. DOI: 10.1093/hmg/ddv396. |
36. | Watanabe N, Santostefano KE, Yachnis AT, et al. A pathologist's perspective on induced pluripotent stem cells[J]. Lab Invest, 2017, 97(10): 1126-1132. DOI: 10.1038/labinvest.2017.81. |
37. | Glicksman MA. Induced pluripotent stem cells: the most versatile source for stem cell therapy[J]. Clin Ther, 2018, 40(7): 1060-1065. DOI: 10.1016/j.clinthera.2018.06.004. |
38. | Hung SS, Van Bergen NJ, Jackson S, et al. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells[J]. Aging (Albany NY), 2016, 8(5): 945-957. DOI: 10.18632/aging.100950. |
39. | Lu HE, Yang YP, Chen YT, et al. Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy[J]. Stem Cell Res, 2018, 28: 56-60. DOI: 10.1016/j.scr.2018.01.029. |
40. | Peron C, Mauceri R, Cabassi T, et al. Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m. G3460A mutation in MT-ND1 associated with Leber's hereditary optic neuropathy (LHON)[J/OL]. Stem Cell Res, 2020, 48: 101939[2020-08-03]. https://pubmed.ncbi.nlm.nih.gov/32771908/. DOI: 10.1016/j.scr.2020.101939. |
41. | Yang YP, Nguyen P, Lin TC, et al. Glutamate stimulation dysregulates AMPA receptors-induced signal transduction pathway in Leber's inherited optic neuropathy patient-specific hiPSC-derived retinal ganglion cells[J/OL]. Cells, 2019, 8(6): 625[2019-06-21]. https://pubmed.ncbi.nlm.nih.gov/31234430/. DOI: 10.3390/cells8060625. |
42. | Wu YR, Wang AG, Chen YT, et al. Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber's hereditary optic neuropathy[J]. Exp Cell Res, 2018, 363(2): 299-309. DOI: 10.1016/j.yexcr.2018.01.020. |
43. | Yang TC, Yarmishyn AA, Yang YP, et al. Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients[J]. Hum Mol Genet, 2020, 29(9): 1454-1464. DOI: 10.1093/hmg/ddaa063. |
44. | Yang TC, Chuang JH, Buddhakosai W, et al. Elongation of axon extension for human iPSC-derived retinal ganglion cells by a nano-imprinted scaffold[J/OL]. Int J Mol Sci, 2017, 18(9): 2013[2017-09-20]. https://pubmed.ncbi.nlm.nih.gov/28930148/. DOI: 10.3390/ijms18092013. |
45. | Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1680): 20140367[2015-10-19]. https://pubmed.ncbi.nlm.nih.gov/26416678/. DOI: 10.1098/rstb.2014.0367. |
46. | Zhang X, Jones D, Gonzalez-Lima F. Mouse model of optic neuropathy caused by mitochondrial complex Ⅰ dysfunction[J]. Neurosci Lett, 2002, 326(2): 97-100. DOI: 10.1016/s0304-3940(02)00327-0. |
47. | Qi X, Sun L, Lewin AS, et al. The mutant human ND4 subunit of complex Ⅰ induces optic neuropathy in the mouse[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 1-10. DOI: 10.1167/iovs.06-0789. |
48. | Lin CS, Sharpley MS, Fan W, et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy[J]. Proc Natl Acad Sci USA, 2012, 109(49): 20065-20070. DOI: 10.1073/pnas.1217113109. |
49. | Zhang L, Liu L, Philip AL, et al. Long-term evaluation of Leber's hereditary optic neuropathy-like symptoms in rotenone administered rats[J]. Neurosci Lett, 2015, 585: 171-176. DOI: 10.1016/j.neulet.2014.12.004. |
50. | Heitz FD, Erb M, Anklin C, et al. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber's hereditary optic neuropathy[J/OL]. PLoS One, 2012, 7(9): e45182[2012-09-18]. https://pubmed.ncbi.nlm.nih.gov/23028832/. DOI: 10.1371/journal.pone.0045182. |
51. | Koilkonda R, Yu H, Talla V, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 7739-7753. DOI: 10.1167/iovs.14-15388. |
52. | Indrieri A, Carrella S, Romano A, et al. MiR-181a/b downregulation exerts a protective action on mitochondrial disease models[J/OL]. EMBO Mol Med, 2019, 11(5): e8734[2019-04-12]. https://pubmed.ncbi.nlm.nih.gov/30979712/. DOI: 10.15252/emmm.201708734. |
53. | Wassmer SJ, De Repentigny Y, Sheppard D, et al. XIAP protects retinal ganglion cells in the mutant ND4 mouse model of Leber hereditary optic neuropathy[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(8): 49[2020-07-01].https://pubmed.ncbi.nlm.nih.gov/32735323/. DOI: 10.1167/iovs.61.8.49. |
54. | Doudna JA. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236. DOI: 10.1038/s41586-020-1978-5. |
55. | Bahr T, Welburn K, Donnelly J, et al. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: challenges and opportunities[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165743[2020-02-24]. https://pubmed.ncbi.nlm.nih.gov/32105823/. DOI: 10.1016/j.bbadis.2020.165743. |
56. | Peron C, Maresca A, Cavaliere A, et al. Exploiting hiPSCs in Leber's hereditary optic neuropathy (LHON): present achievements and future perspectives[J/OL]. Front Neurol, 2021, 12: 648916[2021-06-08].https://pubmed.ncbi.nlm.nih.gov/34168607/. DOI: 10.3389/fneur.2021.648916. |
- 1. Farrar GJ, Chadderton N, Kenna PF, et al. Mitochondrial disorders: aetiologies, models systems, and candidate therapies[J]. Trends Genet, 2013, 29(8): 488-497. DOI: 10.1016/j.tig.2013.05.005.
- 2. Jankauskaitė E, Bartnik E, Kodroń A. Investigating Leber's hereditary optic neuropathy: cell models and future perspectives[J]. Mitochondrion, 2017, 32: 19-26. DOI: 10.1016/j.mito.2016.11.006.
- 3. Giordano L, Deceglie S, d'Adamo P, et al. Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways[J/OL]. Cell Death Dis, 2015, 6(12): e2021[2015-12-17].https://pubmed.ncbi.nlm.nih.gov/26673666/. DOI: 10.1038/cddis.2015.364.
- 4. Caporali L, Maresca A, Capristo M, et al. Incomplete penetrance in mitochondrial optic neuropathies[J]. Mitochondrion, 2017, 36: 130-137. DOI: 10.1016/j.mito.2017.07.004.
- 5. 杨硕, 刘磊, 裴晗, 等. 腺相关病毒2-ND4基因转染细胞线粒体的研究[J]. 中华实验眼科杂志, 2014, 32(8): 693-695. DOI: 10.3760/cma.j.issn.2096-0160.2014.08.005.Yang S, Liu L, Pei H, et al. Study on transfection of adeno associated virus 2-ND4 gene into mitochondria[J]. Chin J Exp Ophthalmol, 2014, 32(8): 693-695. DOI: 10.3760/cma.j.issn.2096-0160.2014.08.005.
- 6. Wang C, Li D, Zhang L, et al. RNA sequencing analyses of gene expression during epstein-barr virus infection of primary B lymphocytes[J/OL]. J Virol, 2019, 93(13): e00226-19[2016-06-14]. https://pubmed.ncbi.nlm.nih.gov/31019051/. DOI: 10.1128/JVI.00226-19.
- 7. Van Bergen NJ, Crowston JG, Craig JE, et al. Measurement of systemic mitochondrial function in advanced primary open-angle glaucoma and Leber hereditary optic neuropathy[J/OL]. PLoS One, 2015, 10(10): e140919[2015-10-23]. https://pubmed.ncbi.nlm.nih.gov/26496696/. DOI: 10.1371/journal.pone.0140919.
- 8. Falabella M, Forte E, Magnifico MC, et al. Evidence for detrimental cross interactions between reactive oxygen and nitrogen species in Leber's hereditary optic neuropathy cells[J/OL]. Oxid Med Cell Longev, 2016, 2016: 3187560[2015-12-31]. https://pubmed.ncbi.nlm.nih.gov/26881022/. DOI: 10.1155/2016/3187560.
- 9. Brown MD, Trounce IA, Jun AS, et al. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation[J]. J Biol Chem, 2000, 275(51): 39831-39836. DOI: 10.1074/jbc.M006476200.
- 10. Chen C, Chen Y, Guan MX. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation[J]. Protein Cell, 2015, 6(12): 862-870. DOI: 10.1007/s13238-015-0175-z.
- 11. Jiang P, Jin X, Peng Y, et al. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation[J]. Hum Mol Genet, 2016, 25(3): 584-596. DOI: 10.1093/hmg/ddv498.
- 12. Jankauskaitė E, Ambroziak AM, Hajieva P, et al. Testosterone increases apoptotic cell death and decreases mitophagy in Leber's hereditary optic neuropathy cells[J]. J Appl Genet, 2020, 61(2): 195-203. DOI: 10.1007/s13353-020-00550-y.
- 13. Toritsuka M, Makinodan M, Yamauchi T, et al. Altered gene expression in lymphoblastoid cell lines after subculture[J]. In Vitro Cell Dev Biol Anim, 2018, 54(7): 523-527. DOI: 10.1007/s11626-018-0267-1.
- 14. Pereira SP, Deus CM, Serafim TL, et al. Metabolic and phenotypic characterization of human skin fibroblasts after forcing oxidative capacity[J]. Toxicol Sci, 2018, 164(1): 191-204. DOI: 10.1093/toxsci/kfy068.
- 15. Tun AW, Chaiyarit S, Kaewsutthi S, et al. Profiling the mitochondrial proteome of Leber's hereditary optic neuropathy (LHON) in Thailand: down-regulation of bioenergetics and mitochondrial protein quality control pathways in fibroblasts with the 11778G>A mutation[J/OL]. PLoS One, 2014, 9(9): e106779[2014-09-12].https://pubmed.ncbi.nlm.nih.gov/25215595/. DOI: 10.1371/journal.pone.0106779.
- 16. Zhou L, Chan JCY, Chupin S, et al. Increased protein S-glutathionylation in Leber's hereditary optic neuropathy (LHON)[J/OL]. Int J Mol Sci, 2020, 21(8): 3027[2020-04-24]. https://pubmed.ncbi.nlm.nih.gov/32344771/. DOI: 10.3390/ijms21083027.
- 17. Uittenbogaard M, Brantner CA, Fang Z, et al. The m. 11778 A>G variant associated with the coexistence of Leber's hereditary optic neuropathy and multiple sclerosis-like illness dysregulates the metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis[J]. Mitochondrion, 2019, 46: 187-194. DOI: 10.1016/j.mito.2018.06.001.
- 18. Catarino CB, Ahting U, Gusic M, et al. Characterization of a Leber's hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m. 11778G>A and m. 14484T>C of the mitochondrial DNA[J]. Mitochondrion, 2017, 36: 15-20. DOI: 10.1016/j.mito.2016.10.002.
- 19. Yu-Wai-Man P, Soiferman D, Moore DG, et al. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy[J]. Mitochondrion, 2017, 36: 36-42. DOI: 10.1016/j.mito.2017.01.004.
- 20. Chao de la Barca JM, Simard G, Amati-Bonneau P, et al. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress[J]. Brain, 2016, 139(11): 2864-2876. DOI: 10.1093/brain/aww222.
- 21. Hu SY, Zhuang QQ, Qiu Y, et al. Cell models and drug discovery for mitochondrial diseases[J]. J Zhejiang Univ Sci B, 2019, 20(5): 449-456. DOI: 10.1631/jzus.B1900196.
- 22. Bacman SR, Nissanka N, Moraes CT. Cybrid technology[J]. Methods Cell Biol, 2020, 155: 415-439. DOI: 10.1016/bs.mcb.2019.11.025.
- 23. Wilkins HM, Carl SM, Swerdlow RH. Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies[J]. Redox Biol, 2014, 2: 619-631. DOI: 10.1016/j.redox.2014.03.006.
- 24. Ji Y, Zhang J, Yu J, et al. Contribution of mitochondrial ND13394T>C mutation to the phenotypic manifestation of Leber's hereditary optic neuropathy[J]. Hum Mol Genet, 2019, 28(9): 1515-1529. DOI: 10.1093/hmg/ddy450.
- 25. Zhang J, Jiang P, Jin X, et al. Leber's hereditary optic neuropathy caused by the homoplasmic ND1m. 3635G>A mutation in nine Han Chinese families[J]. Mitochondrion, 2014, 18: 18-26. DOI: 10.1016/j.mito.2014.08.008.
- 26. Zhang J, Ji Y, Lu Y, et al. Leber's hereditary optic neuropathy (LHON)-associated ND5 12338T >C mutation altered the assembly and function of complex Ⅰ, apoptosis and mitophagy[J]. Hum Mol Genet, 2018, 27(11): 1999-2011. DOI: 10.1093/hmg/ddy107.
- 27. Ji Y, Zhang J, Lu Y, et al. Complex Ⅰ mutations synergize to worsen the phenotypic expression of Leber's hereditary optic neuropathy[J]. J Biol Chem, 2020, 295(38): 13224-13238. DOI: 10.1074/jbc.RA120.014603.
- 28. Sharma LK, Tiwari M, Rai NK, et al. Mitophagy activation repairs Leber's hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival[J]. Hum Mol Genet, 2019, 28(3): 422-433. DOI: 10.1093/hmg/ddy354.
- 29. Zhang J, Ji Y, Liu X, et al. Leber's hereditary optic neuropathy caused by a mutation in mitochondrial tRNA(Thr) in eight Chinese pedigrees[J]. Mitochondrion, 2018, 42: 84-91. DOI: 10.1016/j.mito.2017.12.003.
- 30. Hudson G, Carelli V, Spruijt L, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background[J]. Am J Hum Genet, 2007, 81(2): 228-233. DOI: 10.1086/519394.
- 31. Caporali L, Iommarini L, La Morgia C, et al. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy[J/OL]. PLoS Genet, 2018, 14(2): e1007210[2018-02-14].https://pubmed.ncbi.nlm.nih.gov/29444077/. DOI: 10.1371/journal.pgen.1007210.
- 32. López-Gallardo E, Emperador S, Hernández-Ainsa C, et al. Food derived respiratory complex Ⅰinhibitors modify the effect of Leber hereditary optic neuropathy mutations[J]. Food Chem Toxicol, 2018, 120: 89-97. DOI: 10.1016/j.fct.2018.07.014.
- 33. Datta S, Baudouin C, Brignole-Baudouin F, et al. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2406-2412. DOI: 10.1167/iovs.16-20903.
- 34. Emperador S, López-Gallardo E, Hernández-Ainsa C, et al. Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation[J/OL]. Orphanet J Rare Dis, 2019, 14(1): 150[2019-06-21].https://pubmed.ncbi.nlm.nih.gov/31226990/. DOI: 10.1186/s13023-019-1128-z.
- 35. Pisano A, Preziuso C, Iommarini L, et al. Targeting estrogen receptor beta as preventive therapeutic strategy for Leber's hereditary optic neuropathy[J]. Hum Mol Genet, 2015, 24(24): 6921-6931. DOI: 10.1093/hmg/ddv396.
- 36. Watanabe N, Santostefano KE, Yachnis AT, et al. A pathologist's perspective on induced pluripotent stem cells[J]. Lab Invest, 2017, 97(10): 1126-1132. DOI: 10.1038/labinvest.2017.81.
- 37. Glicksman MA. Induced pluripotent stem cells: the most versatile source for stem cell therapy[J]. Clin Ther, 2018, 40(7): 1060-1065. DOI: 10.1016/j.clinthera.2018.06.004.
- 38. Hung SS, Van Bergen NJ, Jackson S, et al. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells[J]. Aging (Albany NY), 2016, 8(5): 945-957. DOI: 10.18632/aging.100950.
- 39. Lu HE, Yang YP, Chen YT, et al. Generation of patient-specific induced pluripotent stem cells from Leber's hereditary optic neuropathy[J]. Stem Cell Res, 2018, 28: 56-60. DOI: 10.1016/j.scr.2018.01.029.
- 40. Peron C, Mauceri R, Cabassi T, et al. Generation of a human iPSC line, FINCBi001-A, carrying a homoplasmic m. G3460A mutation in MT-ND1 associated with Leber's hereditary optic neuropathy (LHON)[J/OL]. Stem Cell Res, 2020, 48: 101939[2020-08-03]. https://pubmed.ncbi.nlm.nih.gov/32771908/. DOI: 10.1016/j.scr.2020.101939.
- 41. Yang YP, Nguyen P, Lin TC, et al. Glutamate stimulation dysregulates AMPA receptors-induced signal transduction pathway in Leber's inherited optic neuropathy patient-specific hiPSC-derived retinal ganglion cells[J/OL]. Cells, 2019, 8(6): 625[2019-06-21]. https://pubmed.ncbi.nlm.nih.gov/31234430/. DOI: 10.3390/cells8060625.
- 42. Wu YR, Wang AG, Chen YT, et al. Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber's hereditary optic neuropathy[J]. Exp Cell Res, 2018, 363(2): 299-309. DOI: 10.1016/j.yexcr.2018.01.020.
- 43. Yang TC, Yarmishyn AA, Yang YP, et al. Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients[J]. Hum Mol Genet, 2020, 29(9): 1454-1464. DOI: 10.1093/hmg/ddaa063.
- 44. Yang TC, Chuang JH, Buddhakosai W, et al. Elongation of axon extension for human iPSC-derived retinal ganglion cells by a nano-imprinted scaffold[J/OL]. Int J Mol Sci, 2017, 18(9): 2013[2017-09-20]. https://pubmed.ncbi.nlm.nih.gov/28930148/. DOI: 10.3390/ijms18092013.
- 45. Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1680): 20140367[2015-10-19]. https://pubmed.ncbi.nlm.nih.gov/26416678/. DOI: 10.1098/rstb.2014.0367.
- 46. Zhang X, Jones D, Gonzalez-Lima F. Mouse model of optic neuropathy caused by mitochondrial complex Ⅰ dysfunction[J]. Neurosci Lett, 2002, 326(2): 97-100. DOI: 10.1016/s0304-3940(02)00327-0.
- 47. Qi X, Sun L, Lewin AS, et al. The mutant human ND4 subunit of complex Ⅰ induces optic neuropathy in the mouse[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 1-10. DOI: 10.1167/iovs.06-0789.
- 48. Lin CS, Sharpley MS, Fan W, et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy[J]. Proc Natl Acad Sci USA, 2012, 109(49): 20065-20070. DOI: 10.1073/pnas.1217113109.
- 49. Zhang L, Liu L, Philip AL, et al. Long-term evaluation of Leber's hereditary optic neuropathy-like symptoms in rotenone administered rats[J]. Neurosci Lett, 2015, 585: 171-176. DOI: 10.1016/j.neulet.2014.12.004.
- 50. Heitz FD, Erb M, Anklin C, et al. Idebenone protects against retinal damage and loss of vision in a mouse model of Leber's hereditary optic neuropathy[J/OL]. PLoS One, 2012, 7(9): e45182[2012-09-18]. https://pubmed.ncbi.nlm.nih.gov/23028832/. DOI: 10.1371/journal.pone.0045182.
- 51. Koilkonda R, Yu H, Talla V, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 7739-7753. DOI: 10.1167/iovs.14-15388.
- 52. Indrieri A, Carrella S, Romano A, et al. MiR-181a/b downregulation exerts a protective action on mitochondrial disease models[J/OL]. EMBO Mol Med, 2019, 11(5): e8734[2019-04-12]. https://pubmed.ncbi.nlm.nih.gov/30979712/. DOI: 10.15252/emmm.201708734.
- 53. Wassmer SJ, De Repentigny Y, Sheppard D, et al. XIAP protects retinal ganglion cells in the mutant ND4 mouse model of Leber hereditary optic neuropathy[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(8): 49[2020-07-01].https://pubmed.ncbi.nlm.nih.gov/32735323/. DOI: 10.1167/iovs.61.8.49.
- 54. Doudna JA. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236. DOI: 10.1038/s41586-020-1978-5.
- 55. Bahr T, Welburn K, Donnelly J, et al. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: challenges and opportunities[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165743[2020-02-24]. https://pubmed.ncbi.nlm.nih.gov/32105823/. DOI: 10.1016/j.bbadis.2020.165743.
- 56. Peron C, Maresca A, Cavaliere A, et al. Exploiting hiPSCs in Leber's hereditary optic neuropathy (LHON): present achievements and future perspectives[J/OL]. Front Neurol, 2021, 12: 648916[2021-06-08].https://pubmed.ncbi.nlm.nih.gov/34168607/. DOI: 10.3389/fneur.2021.648916.