- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China;
Exosomes are nanovesicles actively secreted by cells, which selectively encapsulate biologically active molecules such as proteins, RNA, and cytokines. They play an important role in intercellular communication, immune regulation, and maintenance of homeostasis, which can also be used as carriers for targeted drug delivery. Retinal ischemia-reperfusion injury (RIRI) is a retinopathy that seriously threatens human vision. At present, the clinical treatment of these diseases are symptomatic treatments, and some patients have poor efficacy or even blindness. As extracellular vesicles rich in functional proteins and RNAs, exosomes can not only be used as drugs for the treatment of RIRI, but also be used as carriers for drug delivery to play synergistic therapeutic effects. In the future, with the deepening of the research on the molecular structure, contents and biological functions of exosomes, as well as the continuous development of ophthalmic biology and genetic engineering technology, exosomes are expected to exert their great potential as therapeutic drugs and carriers, and become an important means of treating RIRI.
Citation: Yang Weiqiang, Tao Yong. Research progress of exosomes in the treatment of retinal ischemia-reperfusion injury. Chinese Journal of Ocular Fundus Diseases, 2022, 38(5): 423-427. doi: 10.3760/cma.j.cn511434-20210308-00123 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. DOI: 10.1038/s41556-018-0250-9. |
2. | Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948. DOI: 10.1016/j.bbagen.2012.03.017. |
3. | 吴晶, 杨长平, 刘锦荣, 等. 外泌体与眼科疾病相关性的研究[J]. 国际眼科纵览, 2018, 42(6): 388-392. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.006.Wu J, Yang CP, Liu JR, et al. Research on exosomes and eye diseases[J]. Int Rev Ophthalmol, 2018, 42(6): 388-392. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.006. |
4. | Stitt AW, O'neill CL, O'doherty MT, et al. Vascular stem cells and ischaemic retinopathies[J]. Prog Retin Eye Res, 2011, 30(3): 149-166. DOI: 10.1016/j.preteyeres.2011.02.001. |
5. | Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001. |
6. | Tezel G. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets[J/OL]. Prog Retin Eye Res, 2022, 87: 100998[2021-08-01]. https://pubmed.ncbi.nlm.nih.gov/34348167/. DOI: 10.1016/j.preteyeres.2021.100998. |
7. | Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J/OL]. Science, 2020, 367(6478): eaau6977[2020-02-07]. https://pubmed.ncbi.nlm.nih.gov/32029601/. DOI: 10.1126/science.aau6977. |
8. | Van Niel G, D'angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125. |
9. | 张慧. 外泌体在糖尿病视网膜病变中的研究进展[J]. 中华实验眼科杂志, 2020, 38(9): 799-803. DOI: 10.3760/cma.j.cn115989-20200424-00285.Zhang H. Research progress of exosomes in diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2020, 38(9): 799-803. DOI: 10.3760/cma.j.cn115989-20200424-00285. |
10. | Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J/OL]. Nat Commun, 2021, 12(1): 4389[2021-07-19]. https://pubmed.ncbi.nlm.nih.gov/34282141/. DOI: 10.1038/s41467-021-24384-2. |
11. | Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J/OL]. Int J Mol Sci, 2019, 20(19): 4684[2019-09-21]. https://pubmed.ncbi.nlm.nih.gov/31546622/. DOI: 10.3390/ijms20194684. |
12. | Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J/OL]. Biomed Res Int, 2018, 2018: 8545347[2018-01-30]. https://pubmed.ncbi.nlm.nih.gov/29662902/. DOI: 10.1155/2018/8545347. |
13. | Dismuke WM, Challa P, Navarro I, et al. Human aqueous humor exosomes[J]. Exp Eye Res, 2015, 132: 73-77. DOI: 10.1016/j.exer.2015.01.019. |
14. | Kang GY, Bang JY, Choi AJ, et al. Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration[J]. J Proteome Res, 2014, 13(2): 581-595. DOI: 10.1021/pr400751k. |
15. | Zhu L, Zang J, Liu B, et al. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes[J]. J Cell Physiol, 2020, 235(10): 7392-7409. DOI: 10.1002/jcp.29641. |
16. | Otsuki Y, Ito E, Mukai A, et al. CD63(+) extracellular vesicles from retinal pigment epithelial cells participate in crosstalk with macrophages in the innate inflammatory axis[J/OL]. Exp Eye Res, 2021, 205: 108496[2021-02-19]. https://pubmed.ncbi.nlm.nih.gov/33610602/. DOI: 10.1016/j.exer.2021.108496. |
17. | Aires ID, Ribeiro-Rodrigues T, Boia R, et al. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells[J]. Glia, 2020, 68(12): 2705-2724. DOI: 10.1002/glia.23880. |
18. | Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307. DOI: 10.3390/cells8040307. |
19. | Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3): 195-208. DOI: 10.1038/nri3622. |
20. | Morris DR, Bounds SE, Liu H, et al. Exosomal miRNA transfer between retinal microglia and RPE[J/OL]. Int J Mol Sci, 2020, 21(10): 3541[2020-05-17]. https://pubmed.ncbi.nlm.nih.gov/32429541/. DOI: 10.3390/ijms21103541. |
21. | Ren Z, Qi Y, Sun S, et al. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair[J]. Stem Cells Dev, 2020, 29(23): 1467-1478. DOI: 10.1089/scd.2020.0133. |
22. | Yu B, Shao H, Su C, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1[J/OL]. Sci Rep, 2016, 6: 34562[2016-09-30]. https://pubmed.ncbi.nlm.nih.gov/27686625/. DOI: 10.1038/srep34562. |
23. | Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J/OL]. J Extracell Vesicles, 2016, 5: 32945[2016-10-31]. https://pubmed.ncbi.nlm.nih.gov/27802845/. DOI: 10.3402/jev.v5.32945. |
24. | Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147. DOI: 10.1016/j.preteyeres.2003.12.001. |
25. | Jiang N, Li Z, Li Z, et al. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury[J/OL]. Int Immunopharmacol, 2020, 88: 106989[2020-09-18]. https://pubmed.ncbi.nlm.nih.gov/33182069/. DOI: 10.1016/j.intimp.2020.106989. |
26. | 郭苗, 颜华. 视网膜缺血再灌注损伤的发病机制与治疗进展[J]. 中华眼底病杂志, 2020, 36(6): 483-488. DOI: 10.3760/cma.j.cn511434-20180807-00276.Guo M, Yan H. Research progress in the mechanism and treatment of retinal ischemia reperfusion injury[J]. Chin J Ocul Fundus Dis, 2020, 36(6): 483-488. DOI: 10.3760/cma.j.cn511434-20180807-00276. |
27. | Chen B, Caballero S, Seo S, et al. Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5587-5595. DOI: 10.1167/iovs.09-3633. |
28. | Ma Q. Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 401-426. DOI: 10.1146/annurev-pharmtox-011112-140320. |
29. | Wan P, Su W, Zhang Y, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury[J]. Cell Death Differ, 2020, 27(1): 176-191. DOI: 10.1038/s41418-019-0351-4. |
30. | Zhang Y, Zhang Z, Yan H. Simvastatin inhibits ischemia/reperfusion injury-induced apoptosis of retinal cells via downregulation of the tumor necrosis factor-α/nuclear factor-κB pathway[J]. Int J Mol Med, 2015, 36(2): 399-405. DOI: 10.3892/ijmm.2015.2244. |
31. | Aydemir O, Celebi S, Yilmaz T, et al. Protective effects of vitamin E forms (alpha-tocopherol, gamma-tocopherol and d-alpha-tocopherol polyethylene glycol 1000 succinate) on retinal edema during ischemia-reperfusion injury in the guinea pig retina[J]. Int Ophthalmol, 2004, 25(5-6): 283-289. DOI: 10.1007/s10792-005-2034-z. |
32. | Yazici A, Aksit H, Sari ES, et al. Comparison of pre-treatment and post-treatment use of selenium in retinal ischemia reperfusion injury[J]. Int J Ophthalmol, 2015, 8(2): 263-268. DOI: 10.3980/j.issn.2222-3959.2015.02.09. |
33. | Liu L, Sun Q, Wang R, et al. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways[J]. Brain Res, 2016, 1646: 327-333. DOI: 10.1016/j.brainres.2016.05.037. |
34. | Chen B, Tang L. Protective effects of catalase on retinal ischemia/reperfusion injury in rats[J]. Exp Eye Res, 2011, 93(5): 599-606. DOI: 10.1016/j.exer.2011.07.007. |
35. | Liu Y, Tang L, Chen B. Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion[J]. Free Radic Biol Med, 2012, 52(5): 909-915. DOI: 10.1016/j.freeradbiomed.2011.12.013. |
36. | Zhou X, Lv J, Li G, et al. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery[J/OL]. Biomaterials, 2021, 268: 120600[2020-12-17]. https://pubmed.ncbi.nlm.nih.gov/33360507/. DOI: 10.1016/j.biomaterials.2020.120600. |
37. | Abcouwer SF, Lin CM, Shanmugam S, et al. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury[J]. J Neuroinflammation, 2013, 10: 149. DOI: 10.1186/1742-2094-10-149. |
38. | Huang D, Chen YS, Green CR, et al. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia[J]. Biomaterials, 2018, 168: 10-23. DOI: 10.1016/j.biomaterials.2018.03.034. |
39. | 李岳美, 李庆和, 郑新华. 神经生长因子联合银杏叶提取物对兔急性青光眼视网膜缺血再灌注损伤的保护作用[J]. 国际眼科杂志, 2017, 17(9): 1635-1638. DOI: 10.3980/j.issn.1672-5123.2017.9.07.Li YM, Li QH, Zheng XH. Protective effect of nerve growth factor associated with ginkgo biloba extraction on acute glaucoma retinal ischemia reperfusion injury in rabbit[J]. Int Eye Sci, 2017, 17(9): 1635-1638. DOI: 10.3980/j.issn.1672-5123.2017.9.07. |
40. | Klingeborn M, Dismuke WM, Bowes Rickman C, et al. Roles of exosomes in the normal and diseased eye[J]. Prog Retin Eye Res, 2017, 59: 158-177. DOI: 10.1016/j.preteyeres.2017.04.004. |
41. | 石燕红, 陶勇. 外泌体在眼科的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(3): 183-187. DOI: 10.3877/cma.j.issn.2095-2007.2021.03.010.Shi YH, Tao Y. Research progress of exosomes in ophthalmology[J]. Chin J Ophthalmol (Electronic Edition), 2021, 11(3): 183-187. DOI: 10.3877/cma.j.issn.2095-2007.2021.03.010. |
42. | Zhang Z, Mugisha A, Fransisca S, et al. Emerging role of exosomes in retinal diseases[J/OL]. Front Cell Dev Biol, 2021, 9: 643680[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33869195/. DOI: 10.3389/fcell.2021.643680. |
43. | Li W, Jin L, Cui Y, et al. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression[J]. J Endocrinol Invest, 2021, 44(6): 1193-1207. DOI: 10.1007/s40618-020-01405-3. |
44. | Harrell CR, Fellabaum C, Arsenijevic A, et al. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma[J/OL]. Stem Cells Int, 2019, 2019: 7869130[2019-12-27]. https://pubmed.ncbi.nlm.nih.gov/31949441/. DOI: 10.1155/2019/7869130. |
45. | Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160. DOI: 10.1016/j.biomaterials.2019.01.016. |
46. | Gu S, Liu Y, Zou J, et al. Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy[J/OL]. Exp Eye Res, 2020, 201: 108271[2020-09-29]. https://pubmed.ncbi.nlm.nih.gov/33007305/. DOI: 10.1016/j.exer.2020.108271. |
47. | Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790. DOI: 10.1016/j.omtn.2019.04.029. |
48. | Liu C, Su C. Design strategies and application progress of therapeutic exosomes[J]. Theranostics, 2019, 9(4): 1015-1028. DOI: 10.7150/thno.30853. |
49. | 林浩. 间充质干细胞来源外泌体靶向修饰在眼病治疗中的应用前景[J]. 中华实验眼科杂志, 2020, 38(10): 890-894. DOI: 10.3760/cma.j.cn115989-20200319-00186.Lin H. Modification of mesenchymal stem cell derived exosomes and its application prospects in the treatment of eye disease[J]. Chin J Exp Ophthalmol, 2020, 38(10): 890-894. DOI: 10.3760/cma.j.cn115989-20200319-00186. |
50. | Tian Y, Zhang F, Qiu Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells[J]. Nat Biomed Eng, 2021, 5(9): 968-982. DOI: 10.1038/s41551-021-00764-3. |
51. | Dong X, Lei Y, Yu Z, et al. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis[J]. Theranostics, 2021, 11(11): 5107-5126. DOI: 10.7150/thno.54755. |
52. | Yan B, Gao L, Huang Y, et al. Exosomes derived from BDNF-expressing 293T attenuate ischemic retinal injury in vitro and in vivo[J/OL]. Aging (Albany NY), 2020, 12: E1(2021-03-18)[2020-11-19]. https://www.aging-us.com/article/202245/text. DOI: 10.18632/aging.202245. [published online ahead of print]. |
53. | Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. DOI: 10.1167/iovs.18-25617. |
54. | Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J/OL]. J Extracell Vesicles, 2018, 7(1): 1535750[2018-11-23]. https://pubmed.ncbi.nlm.nih.gov/30637094/. DOI: 10.1080/20013078.2018.1535750. |
- 1. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. DOI: 10.1038/s41556-018-0250-9.
- 2. Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-948. DOI: 10.1016/j.bbagen.2012.03.017.
- 3. 吴晶, 杨长平, 刘锦荣, 等. 外泌体与眼科疾病相关性的研究[J]. 国际眼科纵览, 2018, 42(6): 388-392. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.006.Wu J, Yang CP, Liu JR, et al. Research on exosomes and eye diseases[J]. Int Rev Ophthalmol, 2018, 42(6): 388-392. DOI: 10.3760/cma.j.issn.1673-5803.2018.06.006.
- 4. Stitt AW, O'neill CL, O'doherty MT, et al. Vascular stem cells and ischaemic retinopathies[J]. Prog Retin Eye Res, 2011, 30(3): 149-166. DOI: 10.1016/j.preteyeres.2011.02.001.
- 5. Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
- 6. Tezel G. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets[J/OL]. Prog Retin Eye Res, 2022, 87: 100998[2021-08-01]. https://pubmed.ncbi.nlm.nih.gov/34348167/. DOI: 10.1016/j.preteyeres.2021.100998.
- 7. Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J/OL]. Science, 2020, 367(6478): eaau6977[2020-02-07]. https://pubmed.ncbi.nlm.nih.gov/32029601/. DOI: 10.1126/science.aau6977.
- 8. Van Niel G, D'angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
- 9. 张慧. 外泌体在糖尿病视网膜病变中的研究进展[J]. 中华实验眼科杂志, 2020, 38(9): 799-803. DOI: 10.3760/cma.j.cn115989-20200424-00285.Zhang H. Research progress of exosomes in diabetic retinopathy[J]. Chin J Exp Ophthalmol, 2020, 38(9): 799-803. DOI: 10.3760/cma.j.cn115989-20200424-00285.
- 10. Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J/OL]. Nat Commun, 2021, 12(1): 4389[2021-07-19]. https://pubmed.ncbi.nlm.nih.gov/34282141/. DOI: 10.1038/s41467-021-24384-2.
- 11. Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J/OL]. Int J Mol Sci, 2019, 20(19): 4684[2019-09-21]. https://pubmed.ncbi.nlm.nih.gov/31546622/. DOI: 10.3390/ijms20194684.
- 12. Konoshenko MY, Lekchnov EA, Vlassov AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J/OL]. Biomed Res Int, 2018, 2018: 8545347[2018-01-30]. https://pubmed.ncbi.nlm.nih.gov/29662902/. DOI: 10.1155/2018/8545347.
- 13. Dismuke WM, Challa P, Navarro I, et al. Human aqueous humor exosomes[J]. Exp Eye Res, 2015, 132: 73-77. DOI: 10.1016/j.exer.2015.01.019.
- 14. Kang GY, Bang JY, Choi AJ, et al. Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration[J]. J Proteome Res, 2014, 13(2): 581-595. DOI: 10.1021/pr400751k.
- 15. Zhu L, Zang J, Liu B, et al. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes[J]. J Cell Physiol, 2020, 235(10): 7392-7409. DOI: 10.1002/jcp.29641.
- 16. Otsuki Y, Ito E, Mukai A, et al. CD63(+) extracellular vesicles from retinal pigment epithelial cells participate in crosstalk with macrophages in the innate inflammatory axis[J/OL]. Exp Eye Res, 2021, 205: 108496[2021-02-19]. https://pubmed.ncbi.nlm.nih.gov/33610602/. DOI: 10.1016/j.exer.2021.108496.
- 17. Aires ID, Ribeiro-Rodrigues T, Boia R, et al. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells[J]. Glia, 2020, 68(12): 2705-2724. DOI: 10.1002/glia.23880.
- 18. Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307. DOI: 10.3390/cells8040307.
- 19. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3): 195-208. DOI: 10.1038/nri3622.
- 20. Morris DR, Bounds SE, Liu H, et al. Exosomal miRNA transfer between retinal microglia and RPE[J/OL]. Int J Mol Sci, 2020, 21(10): 3541[2020-05-17]. https://pubmed.ncbi.nlm.nih.gov/32429541/. DOI: 10.3390/ijms21103541.
- 21. Ren Z, Qi Y, Sun S, et al. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair[J]. Stem Cells Dev, 2020, 29(23): 1467-1478. DOI: 10.1089/scd.2020.0133.
- 22. Yu B, Shao H, Su C, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1[J/OL]. Sci Rep, 2016, 6: 34562[2016-09-30]. https://pubmed.ncbi.nlm.nih.gov/27686625/. DOI: 10.1038/srep34562.
- 23. Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J/OL]. J Extracell Vesicles, 2016, 5: 32945[2016-10-31]. https://pubmed.ncbi.nlm.nih.gov/27802845/. DOI: 10.3402/jev.v5.32945.
- 24. Osborne NN, Casson RJ, Wood JP, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147. DOI: 10.1016/j.preteyeres.2003.12.001.
- 25. Jiang N, Li Z, Li Z, et al. Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury[J/OL]. Int Immunopharmacol, 2020, 88: 106989[2020-09-18]. https://pubmed.ncbi.nlm.nih.gov/33182069/. DOI: 10.1016/j.intimp.2020.106989.
- 26. 郭苗, 颜华. 视网膜缺血再灌注损伤的发病机制与治疗进展[J]. 中华眼底病杂志, 2020, 36(6): 483-488. DOI: 10.3760/cma.j.cn511434-20180807-00276.Guo M, Yan H. Research progress in the mechanism and treatment of retinal ischemia reperfusion injury[J]. Chin J Ocul Fundus Dis, 2020, 36(6): 483-488. DOI: 10.3760/cma.j.cn511434-20180807-00276.
- 27. Chen B, Caballero S, Seo S, et al. Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5587-5595. DOI: 10.1167/iovs.09-3633.
- 28. Ma Q. Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 401-426. DOI: 10.1146/annurev-pharmtox-011112-140320.
- 29. Wan P, Su W, Zhang Y, et al. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury[J]. Cell Death Differ, 2020, 27(1): 176-191. DOI: 10.1038/s41418-019-0351-4.
- 30. Zhang Y, Zhang Z, Yan H. Simvastatin inhibits ischemia/reperfusion injury-induced apoptosis of retinal cells via downregulation of the tumor necrosis factor-α/nuclear factor-κB pathway[J]. Int J Mol Med, 2015, 36(2): 399-405. DOI: 10.3892/ijmm.2015.2244.
- 31. Aydemir O, Celebi S, Yilmaz T, et al. Protective effects of vitamin E forms (alpha-tocopherol, gamma-tocopherol and d-alpha-tocopherol polyethylene glycol 1000 succinate) on retinal edema during ischemia-reperfusion injury in the guinea pig retina[J]. Int Ophthalmol, 2004, 25(5-6): 283-289. DOI: 10.1007/s10792-005-2034-z.
- 32. Yazici A, Aksit H, Sari ES, et al. Comparison of pre-treatment and post-treatment use of selenium in retinal ischemia reperfusion injury[J]. Int J Ophthalmol, 2015, 8(2): 263-268. DOI: 10.3980/j.issn.2222-3959.2015.02.09.
- 33. Liu L, Sun Q, Wang R, et al. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways[J]. Brain Res, 2016, 1646: 327-333. DOI: 10.1016/j.brainres.2016.05.037.
- 34. Chen B, Tang L. Protective effects of catalase on retinal ischemia/reperfusion injury in rats[J]. Exp Eye Res, 2011, 93(5): 599-606. DOI: 10.1016/j.exer.2011.07.007.
- 35. Liu Y, Tang L, Chen B. Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion[J]. Free Radic Biol Med, 2012, 52(5): 909-915. DOI: 10.1016/j.freeradbiomed.2011.12.013.
- 36. Zhou X, Lv J, Li G, et al. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery[J/OL]. Biomaterials, 2021, 268: 120600[2020-12-17]. https://pubmed.ncbi.nlm.nih.gov/33360507/. DOI: 10.1016/j.biomaterials.2020.120600.
- 37. Abcouwer SF, Lin CM, Shanmugam S, et al. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury[J]. J Neuroinflammation, 2013, 10: 149. DOI: 10.1186/1742-2094-10-149.
- 38. Huang D, Chen YS, Green CR, et al. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia[J]. Biomaterials, 2018, 168: 10-23. DOI: 10.1016/j.biomaterials.2018.03.034.
- 39. 李岳美, 李庆和, 郑新华. 神经生长因子联合银杏叶提取物对兔急性青光眼视网膜缺血再灌注损伤的保护作用[J]. 国际眼科杂志, 2017, 17(9): 1635-1638. DOI: 10.3980/j.issn.1672-5123.2017.9.07.Li YM, Li QH, Zheng XH. Protective effect of nerve growth factor associated with ginkgo biloba extraction on acute glaucoma retinal ischemia reperfusion injury in rabbit[J]. Int Eye Sci, 2017, 17(9): 1635-1638. DOI: 10.3980/j.issn.1672-5123.2017.9.07.
- 40. Klingeborn M, Dismuke WM, Bowes Rickman C, et al. Roles of exosomes in the normal and diseased eye[J]. Prog Retin Eye Res, 2017, 59: 158-177. DOI: 10.1016/j.preteyeres.2017.04.004.
- 41. 石燕红, 陶勇. 外泌体在眼科的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(3): 183-187. DOI: 10.3877/cma.j.issn.2095-2007.2021.03.010.Shi YH, Tao Y. Research progress of exosomes in ophthalmology[J]. Chin J Ophthalmol (Electronic Edition), 2021, 11(3): 183-187. DOI: 10.3877/cma.j.issn.2095-2007.2021.03.010.
- 42. Zhang Z, Mugisha A, Fransisca S, et al. Emerging role of exosomes in retinal diseases[J/OL]. Front Cell Dev Biol, 2021, 9: 643680[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33869195/. DOI: 10.3389/fcell.2021.643680.
- 43. Li W, Jin L, Cui Y, et al. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression[J]. J Endocrinol Invest, 2021, 44(6): 1193-1207. DOI: 10.1007/s40618-020-01405-3.
- 44. Harrell CR, Fellabaum C, Arsenijevic A, et al. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma[J/OL]. Stem Cells Int, 2019, 2019: 7869130[2019-12-27]. https://pubmed.ncbi.nlm.nih.gov/31949441/. DOI: 10.1155/2019/7869130.
- 45. Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160. DOI: 10.1016/j.biomaterials.2019.01.016.
- 46. Gu S, Liu Y, Zou J, et al. Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy[J/OL]. Exp Eye Res, 2020, 201: 108271[2020-09-29]. https://pubmed.ncbi.nlm.nih.gov/33007305/. DOI: 10.1016/j.exer.2020.108271.
- 47. Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790. DOI: 10.1016/j.omtn.2019.04.029.
- 48. Liu C, Su C. Design strategies and application progress of therapeutic exosomes[J]. Theranostics, 2019, 9(4): 1015-1028. DOI: 10.7150/thno.30853.
- 49. 林浩. 间充质干细胞来源外泌体靶向修饰在眼病治疗中的应用前景[J]. 中华实验眼科杂志, 2020, 38(10): 890-894. DOI: 10.3760/cma.j.cn115989-20200319-00186.Lin H. Modification of mesenchymal stem cell derived exosomes and its application prospects in the treatment of eye disease[J]. Chin J Exp Ophthalmol, 2020, 38(10): 890-894. DOI: 10.3760/cma.j.cn115989-20200319-00186.
- 50. Tian Y, Zhang F, Qiu Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells[J]. Nat Biomed Eng, 2021, 5(9): 968-982. DOI: 10.1038/s41551-021-00764-3.
- 51. Dong X, Lei Y, Yu Z, et al. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis[J]. Theranostics, 2021, 11(11): 5107-5126. DOI: 10.7150/thno.54755.
- 52. Yan B, Gao L, Huang Y, et al. Exosomes derived from BDNF-expressing 293T attenuate ischemic retinal injury in vitro and in vivo[J/OL]. Aging (Albany NY), 2020, 12: E1(2021-03-18)[2020-11-19]. https://www.aging-us.com/article/202245/text. DOI: 10.18632/aging.202245. [published online ahead of print].
- 53. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. DOI: 10.1167/iovs.18-25617.
- 54. Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J/OL]. J Extracell Vesicles, 2018, 7(1): 1535750[2018-11-23]. https://pubmed.ncbi.nlm.nih.gov/30637094/. DOI: 10.1080/20013078.2018.1535750.