Intraocular tumors is a serious blinding eye disease, which has a serious impact on patients' vision and even life. At present, the main treatments include surgical treatment, radiation therapy, chemotherapy, laser therapy and combination therapy. In recent years, with the wide application of anti-vascular endothelial growth factor (VEGF) in the treatment of ocular diseases, many studies have confirmed that anti-VEGF drugs play an important auxiliary role in the treatment of intraocular tumors and its complications. In terms of the therapeutic effect, intravitreal anti-VEGF combined with other methods have a good prognosis in the treatment of choroidal metastatic carcinoma and retinoblastoma, while the therapeutic effect of uveal melanoma is still controversial. In the treatment of intraocular tumor complications, intravitreal anti-VEGF also has a good effect on the secondary lesions of choroidal osteoma and radiation retinopathy. As for drug safety, intravitreal anti-VEGF can significantly reduce the toxic and side effects of systemic chemotherapeutic therapy. However, the dosage and medication regimen of anti-VEGF drugs in the treatment of intraocular tumors and their complications have not been unified in current studies, and further basic and clinical trials are still needed to explore in the future.
Citation: Di Yu, Ye Junjie. Research advances on anti-vascular endothelial growth factor in the treatment of intraocular tumors and its complications. Chinese Journal of Ocular Fundus Diseases, 2022, 38(10): 857-861. doi: 10.3760/cma.j.cn511434-20210709-00369 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | 魏文斌, 周楠. 眼内肿瘤的诊断思维[J]. 中华实验眼科杂志, 2018, 36(10): 737-741. DOI: 10.3760/cma.j.issn.2095-0160.2018.10.001.Wei WB, Zhou N. Diagnosis of intraocular tumors[J]. Chin J Exp Ophthalmol, 2018, 36(10): 737-741. DOI: 10.3760/cma.j.issn.2095-0160.2018.10.001. |
2. | Bornfeld N, Biewald E, Bauer S, et al. The interdisciplinary diagnosis and treatment of intraocular tumors[J]. Dtsch Arztebl Int, 2018, 115(7): 106-111. DOI: 10.3238/arztebl.2018.0106. |
3. | Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy[J]. Cent Eur Immnol, 2016, 41(3): 311-316. DOI: 10.5114/ceji.2016.63132. |
4. | Wong M, Lee WB, Halpern RL, et al. Ciliary body from renal cell carcinoma successfully treated with intravitreal bevacizumab[J]. Am J Ophthalmol Case Rep, 2017, 6: 61-63. DOI: 10.1016/j.ajoc.2017.01.009. |
5. | Nadiminti K, Lenone JP. Intraocular bevacizumab in the treatment of choroidal metastases from breast[J/OL]. BMJ Case Rep, 2016, 2016: bcr2016215719[2016-07-18]. https://pubmed.ncbi.nlm.nih.gov/27435845/. DOI: 10.1136/bcr-2016-215719. |
6. | Yasui H, Sato K, Takeyama Y, et al. Effective treatment with intravitreal injection of bevacizumab for exudative retinal detachment secondary to choroidal metastasis of non-small cell lung carcinoma[J]. Am J Case Rep, 2015, 16: 728-732. DOI: 10.12659/ajcr.894600. |
7. | Mansour AM, Alameddine R. Intravitreal bevacizumab for consecutive multiple choroidal breast metastatic lesions[J/OL]. BMJ Case Rep, 2012, 2012: bcr0320126124[2012-06-14]. https://pubmed.ncbi.nlm.nih.gov/22707687/. DOI: 10.1136/bcr.03.1012.6124. |
8. | Yang H, Jager MJ, Grossniklaus HE. Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2835-2842. DOI: 10.1167/iovs.09-4755. |
9. | Stathopoulos C, Gaillard MC, Moulin A, et al. Intravitreal anti-vascular endothelial growth factor for the management of neovascularization in retinoblastoma after intravenous and/or intraarterial chemotherapy: long-term outcomes in a series of 35 eyes[J]. Retina, 2019, 39(12): 2273-2282. DOI: 10.1097/IAE.0000000000002339. |
10. | Zhang Q, Cheng Y, Huang L, et al. Inhibitory effect of carboplatin in combination with bevacizumab on human retinoblastoma in an in vitro and in vivo model[J]. Oncol Lett, 2017, 14(5): 5326-5332. DOI: 10.3892/ol.2017.6827. |
11. | 侯宪如, 程湧, 张琦, 等. 玻璃体腔注射卡铂联合贝伐单抗治疗难治型视网膜母细胞瘤的疗效观察[J]. 中华眼科杂志, 2015, 51(2): 126-129. DOI: 10.3760/cma.j.issn.0412-4081.2015.02.013.Hou XR, Cheng Y, Zhang Q, et al. Efficacy of intravitreal carboplatin plus bevacizumab in refractory retinoblastoma[J]. Chin J Ophthalmol, 2015, 51(2): 126-129. DOI: 10.3760/cma.j.issn.0412-4081.2015.02.013. |
12. | Kim DY, Choi JA, Koh JY, et al. Efficacy and safety of aflibercept in in vitro and in vivo models of retinoblastoma[J]. J Exp Clin Cancer Res, 2016, 35(1): 171. DOI: 10.1186/s13046-016-0451-7. |
13. | Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. N Eng J Med, 2004, 350(23): 2335-2342. DOI: 10.1056/NEJMoa032691. |
14. | Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl Med, 2006, 355(14): 1419-1431. DOI: 10.1056/NEJMoa054481. |
15. | Saeed MU, Gkaragkani E, Ali K. Energing roles for antiangiogenesis factors in management of ocular disease[J]. Clin Ophthalmol, 2013, 6: 533-543. DOI: 10.2147/OPTH.S31016. |
16. | Chen X, Li J, Li M, et al. KH902 suppresses high glucose-induced migration and sprouting of human retinal endothelial cells by blocking VEGF and PIGF[J]. Diabetes Obes Metab, 2013, 15(3): 224-233. DOI: 10.1111/dom.12008. |
17. | 马纳, 李亚静, 范吉平. 康柏西普治疗脉络膜骨瘤继发视网膜脱离1例[J]. 临床眼科杂志, 2018, 26(2): 185-186. DOI: 10.3969/j.issn.1006-8422.2018.02.028.Ma N, Li YJ, Fan JP. Conbercept for the treatment of retinal detachment secondary to choroidal osteoma: a case report[J]. J Clin Ophthalmol, 2018, 26(2): 185-186. DOI: 10.3969/j.issn.1006-8422.2018.02.028. |
18. | Shah SU, Mashayekhi A, Shields CL, et al. Uveal metastasis from lung cancer: clinical features, treatment, and outcome in 194 patients[J]. Ophthalmology, 2014, 121(1): 352-357. DOI: 10.1016/j.ophtha.2013.07.014. |
19. | Mathis T, Jardel P, Loria O, et al. New concepts in the diagnosis and management of choroidal metastasis[J]. Prog Retin Eye Res, 2019, 68: 144-176. DOI: 10.1016/j.preteyeres.2018.09.003. |
20. | Arepalli S, Kaliki S, Shields CL. Choroidal metastases: origin, features, and therapy[J]. Indian J Ophthalmol, 2015, 63(2): 122-127. DOI: 10.4103/0301-4738.154380. |
21. | Maudgil A, Sears KS, Rundle PA, et al. Failure of intravitreal bevacizumab in the treatment of choroidal metastasis[J]. Eye (lond), 2015, 29(5): 707-711. DOI: 10.1038/eye.2015.21. |
22. | Singh N, Bansal R, Behera D, et al. Intravitreal bevacizumab for choroidal metastases: the key to efficacy is simultaneous administration of systemic therapy[J]. Eye (Lond), 2015, 29(12): 1629. DOI: 10.1038/eye.2015.176. |
23. | Lin CJ, Tsai YY. The effect of intravitreal bevacizumab and transpupillary thermotherapy on choroidal metastases and literature review[J]. Indian J Ophthalmol, 2015, 63(1): 37-41. DOI: 10.4103/0301-4738.151465. |
24. | Hussain RN, Heimann H, Damato B. Neoadjuvant intravitreal ranibizumab treatment in high risk ocular melanoma patients: a two stage single-centre phase Ⅱ single-arm study[J]. Melanoma Res, 2020, 30(1): 102-106. DOI: 10.1097/CMR.0000000000000635. |
25. | Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival[J]. Ophthalmology, 2011, 118(9): 1881-1885. DOI: 10.1016/j.ophtha.2011.01.040. |
26. | Boyd SR, Tan D, Bunce C, et al. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window[J]. Br J Ophthalmol, 2002, 86(4): 448-452. DOI: 10.1136/bjo.86.4.448. |
27. | Missotten GS, Notting IC, Schlingemann RO, et al. Vascular endothelial growth factor a in eyes with uveal melanoma[J]. Arch Ophthalmol, 2006, 124(10): 1428-1434. DOI: 10.1001/archopht.124.10.1428. |
28. | El Filali M, Van der Velden PA, Luyten GPM, et al. Antiangiogenic therapy in uveal melanoma[J]. Dev Ophthalmol, 2012, 49: 117-136. DOI: 10.1159/000329591. |
29. | Crosby MB, Yang H, Gao W, et al. Serum vascular endothelial growth factor (VEGF) levels correlate with number and location of micrometastases in a murine model of uveal melanoma[J]. Br J Ophthalmol, 2011, 95(1): 112-117. DOI: 10.1136/bjo.2010.182402. |
30. | Barak V, Pe' er J, Kalickman I, et al. VEGF as biomarker for metastatic uveal melanoma in humans[J]. Curr Eye Res, 2011, 36(4): 386-390. DOI: 10.3109/02713683.2010.534573. |
31. | El Filali M, Ly LV, Luyten GP, et al. Bevacizumab and intraocular tumors: an intriguing paradox[J]. Mol Vis, 2012, 18: 2454-2467. |
32. | Francis JH, Kim J, Lin A, et al. Growth of uveal melanoma following intravitreal bevacizumab[J]. Ocul Ocncol Pathol, 2017, 3(2): 117-121. DOI: 10.1159/000450859. |
33. | Tura A, Pawlik VE, Rudolf M, et al. Uptake of ranibizumab but not bevacizumab into uveal melanoma cells correlates with a sustained decline in VEGF-A levels and metastatic activities[J]. Cancers (Basel), 2019, 11(6): 868. DOI: 10.3390/camcers11060868. |
34. | Lee SY, Kim DK, Cho JH, et al. Inhibitory effect of bevacizumab on the angiogenesis and growth of retinoblastoma[J]. Arch Ophthalmol, 2008, 126(7): 953-958. DOI: 10.1001/archopht.126.7.953. |
35. | Shields CL, Sun H, Demirci H, et al. Factors predictive of tumor growth, tumor decalcification, choroidal neovascularization, and visual outcome in 74 eyes with choroidal osteoma[J]. Arch Ophthalmol, 2005, 123(12): 1658-1666. DOI: 10.1001/archopht.123.12.1658. |
36. | Foster BS, Fernandez-Suntay JP, Dryja TP, et al. Clinicopathologic reports, case reports, and small case series: surgical removal and histopathologic findings of a subfoveal neovascular membrane associated with choroidal osteoma[J]. Arch Ophthalmol, 2003, 121(2): 273-276. DOI: 10.1001/archopht.121.2.273. |
37. | Sagar P, Shanmugam M, Ramanjulu R, et al. OCT angiography characteristics of choroidal osteoma[J]. Ophthalmol Retina, 2018, 2(1): 77-79. DOI: 10.1016/j.oret.2017.05.011. |
38. | Khan MA, DeCroos FC, Storey PP, et al. Outcomes of anti-vascular endothelial growth factor therapy in the management of choroidal neovascularization associated with choroidal osteoma[J]. Retina, 2014, 34(9): 1750-1756. DOI: 10.1097/IAE.0000000000000187. |
39. | Mansour AM, Arevalo JF, AI Kahtani E, et al. Role of intravitreal antivascular endothelial growth injections for choroidal neovascularization due to choroidal osteoma[J/OL]. J Ophthalmol, 2014, 2014: 210458[2014-07-23]. https://pubmed.ncbi.nlm.nih.gov/25147732/. DOI: 10.1155/2014/210458. |
40. | Bouladi M, Bouraoui R, Zerei N, et al. Four-year SD-OCT follow-up of a treated bilateral choroidal osteoma complicated by choroidal neovascularisation[J/OL]. J Fr Ophthalmol, 2018, 41(1): e35-38[2018-01-05]. https://pubmed.ncbi.nlm.nih.gov/29310955/. DOI: 10.1016/j.jfo.2017.03.025. |
41. | Furino C, Di Antonil L, Grassi MO, et al. Choroidal neovascularization due to choroidal osteoma treated with anti-vascular endothelial growth factor therapy: an optical coherence tomography angiography study[J]. Eur J Ophthalmol, 2019, 29(3): 323-329. DOI: 10.1177/1120672118792187. |
42. | Shen C, Yan S, Du M, et al. Assessment of choroidal osteoma complicating choroidal neovascularization by optical coherence tomography angiography[J]. Int Ophthalmol, 2018, 38(2): 787-792. DOI: 10.1007/s10792-017-0503-9. |
43. | Saitta A, Nicolai M, Neri P, et al. Rescue therapy with intravitreal aflibercept for choroidal neovascularization secondary to choroidal osteoma non- responder to intravitreal bevacizumab and ranibizumab[J]. Int Ophthalmol, 2015, 35(3): 441-444. DOI: 10.1007/s10792-015-0059-5. |
44. | Yoshikawa T, Takahashi K. Long-term outcomes of intravitreal injection of bevacizumab for choroidal neovascularization associated with choroidal oateoma[J]. Clin Ophthalmol, 2015, 9: 429-437. DOI: 10.2147/OPTH.S78817. |
45. | Song JH, Bae JH, Lee SC. Intravitreal bevacizumab in the management of subretinal fluid associated with choroidal osteoma[J]. Retina, 2010, 30(6): 945-951. DOI: 10.1097/IAE.0b013e3181c720ca. |
46. | Najafabadi FF, Hendimarjan SM, Zarrin Y, et al. Intravitreal bevacizumab for management of choroidal osteoma without choroidal neovascularization[J]. J Ophthalmol Vis Res, 2015, 10(4): 484-486. DOI: 10.4103/2008-322X.176905. |
47. | Vayalambrone D, Misra A. Paediatric choroidal osteoma treated with ranibizumab[J/OL]. BMJ Case Rep, 2012, 2012: bcr2012007446[2012-11-28]. https://pubmed.ncbi.nlm.nih.gov/23192581/. DOI: 10.1136/bcr-2012-007-007446. |
48. | Matet A, Daruich A, Zografos L. Radiation maculopathy after proton beam therapy for uveal melanoma: optical coherence tomography angiography alterations influencing visual acuity[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3851-3861. DOI: 10.1167/iovs.17-22324. |
49. | Horgan N, Shields CL, Mashayekhi A, et al. Classification and treatment of radiation maculopathy[J]. Curr Opin Ophthalmol, 2010, 21(3): 233-238. DOI: 10.1097/ICU.0b013e3283386687. |
50. | Horowitz SA, Damasceno NP, Damasceno EF, et al. Treatment of radiation retinopathy with intravitreal injection of ranibizumab (Lucentis®)[J]. Int Med Case Rep J, 2020, 13: 27-32. DOI: 10.2147/IMCRJ.S191654. |
51. | Schefler AC, Fuller D, Anand R, et al. Randomized trial of monthly versus as-needed intravitreal ranibizumab for radiation retinopathy-related macular edema: 1 year outcomes[J]. Am J Ophthalmol, 2020, 216: 165-173. DOI: 10.1016/j.ajo.2020.03.045. |
52. | Fallico M, Reibaldi M, Avitabile T, et al. Intravitreal aflibercept for the treatment of radiation-induced macular edema after ruthenium 106 plaque radiotherapy for choroidal melanoma[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1547-1554. DOI: 10.1007/s00417-019-04347-6. |
53. | Shah SU, Shields CL, Bianciotto CG, et al. Intravitreal bevacizumab at 4-month intervals for pevention of macular edema after plaque radiotherapy of uveal melanoma[J]. Ophthalmology, 2014, 121(1): 269-275. DOI: 10.1016/j.ophtha.2013.08.039. |
54. | Kim IK, Lane AM, Jain P, et al. Ranibizumab for the prevention of radiation complications in patients treated with proton beam irradiation for choroidal melanoma[J/OL]. Trans Am Ophthalmol Soc, 2016, 114: T2[2016-08-01]. https://pubmed.ncbi.nlm.nih.gov/27630373/. |
55. | Haji Mohd Yasin NA, Gray AR, Bevin TH, et al. Choroidal melanoma treated with stereotactic fractionated radiotherapy and prophylactic intravitreal bevacizumab: the Dunedin hospital experience[J]. J Med Imaging Radiat Oncol, 2016, 60(6): 756-763. DOI: 10.1111/1754-9485.12489. |
56. | Chang M, Dalvin LA, Mazloumi M, et al. Prophylactic intravitreal bevacizumab after plaque radiotherapy for uveal melanoma: analysis of visual acuity, tumor rsponse, and radiation complications in 1131 eyes based on patient age[J]. Asia Pac J Ophthalmol (Phila), 2020, 9(1): 29-38. DOI: 10.1097/APO.0000000000000271. |
57. | Yang X, Dalvin LA, Mazloumi M, et al. Impact of uveal melanoma thickness on post-plaque radiotherapy outcomes in the prophylactic anti-vascular endothelial growth factor era in 1131 patients[J]. Clin Exp Ophthalmol, 2020, 48(5): 610-623. DOI: 10.1111/ceo.13758. |
- 1. 魏文斌, 周楠. 眼内肿瘤的诊断思维[J]. 中华实验眼科杂志, 2018, 36(10): 737-741. DOI: 10.3760/cma.j.issn.2095-0160.2018.10.001.Wei WB, Zhou N. Diagnosis of intraocular tumors[J]. Chin J Exp Ophthalmol, 2018, 36(10): 737-741. DOI: 10.3760/cma.j.issn.2095-0160.2018.10.001.
- 2. Bornfeld N, Biewald E, Bauer S, et al. The interdisciplinary diagnosis and treatment of intraocular tumors[J]. Dtsch Arztebl Int, 2018, 115(7): 106-111. DOI: 10.3238/arztebl.2018.0106.
- 3. Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy[J]. Cent Eur Immnol, 2016, 41(3): 311-316. DOI: 10.5114/ceji.2016.63132.
- 4. Wong M, Lee WB, Halpern RL, et al. Ciliary body from renal cell carcinoma successfully treated with intravitreal bevacizumab[J]. Am J Ophthalmol Case Rep, 2017, 6: 61-63. DOI: 10.1016/j.ajoc.2017.01.009.
- 5. Nadiminti K, Lenone JP. Intraocular bevacizumab in the treatment of choroidal metastases from breast[J/OL]. BMJ Case Rep, 2016, 2016: bcr2016215719[2016-07-18]. https://pubmed.ncbi.nlm.nih.gov/27435845/. DOI: 10.1136/bcr-2016-215719.
- 6. Yasui H, Sato K, Takeyama Y, et al. Effective treatment with intravitreal injection of bevacizumab for exudative retinal detachment secondary to choroidal metastasis of non-small cell lung carcinoma[J]. Am J Case Rep, 2015, 16: 728-732. DOI: 10.12659/ajcr.894600.
- 7. Mansour AM, Alameddine R. Intravitreal bevacizumab for consecutive multiple choroidal breast metastatic lesions[J/OL]. BMJ Case Rep, 2012, 2012: bcr0320126124[2012-06-14]. https://pubmed.ncbi.nlm.nih.gov/22707687/. DOI: 10.1136/bcr.03.1012.6124.
- 8. Yang H, Jager MJ, Grossniklaus HE. Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2835-2842. DOI: 10.1167/iovs.09-4755.
- 9. Stathopoulos C, Gaillard MC, Moulin A, et al. Intravitreal anti-vascular endothelial growth factor for the management of neovascularization in retinoblastoma after intravenous and/or intraarterial chemotherapy: long-term outcomes in a series of 35 eyes[J]. Retina, 2019, 39(12): 2273-2282. DOI: 10.1097/IAE.0000000000002339.
- 10. Zhang Q, Cheng Y, Huang L, et al. Inhibitory effect of carboplatin in combination with bevacizumab on human retinoblastoma in an in vitro and in vivo model[J]. Oncol Lett, 2017, 14(5): 5326-5332. DOI: 10.3892/ol.2017.6827.
- 11. 侯宪如, 程湧, 张琦, 等. 玻璃体腔注射卡铂联合贝伐单抗治疗难治型视网膜母细胞瘤的疗效观察[J]. 中华眼科杂志, 2015, 51(2): 126-129. DOI: 10.3760/cma.j.issn.0412-4081.2015.02.013.Hou XR, Cheng Y, Zhang Q, et al. Efficacy of intravitreal carboplatin plus bevacizumab in refractory retinoblastoma[J]. Chin J Ophthalmol, 2015, 51(2): 126-129. DOI: 10.3760/cma.j.issn.0412-4081.2015.02.013.
- 12. Kim DY, Choi JA, Koh JY, et al. Efficacy and safety of aflibercept in in vitro and in vivo models of retinoblastoma[J]. J Exp Clin Cancer Res, 2016, 35(1): 171. DOI: 10.1186/s13046-016-0451-7.
- 13. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer[J]. N Eng J Med, 2004, 350(23): 2335-2342. DOI: 10.1056/NEJMoa032691.
- 14. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl Med, 2006, 355(14): 1419-1431. DOI: 10.1056/NEJMoa054481.
- 15. Saeed MU, Gkaragkani E, Ali K. Energing roles for antiangiogenesis factors in management of ocular disease[J]. Clin Ophthalmol, 2013, 6: 533-543. DOI: 10.2147/OPTH.S31016.
- 16. Chen X, Li J, Li M, et al. KH902 suppresses high glucose-induced migration and sprouting of human retinal endothelial cells by blocking VEGF and PIGF[J]. Diabetes Obes Metab, 2013, 15(3): 224-233. DOI: 10.1111/dom.12008.
- 17. 马纳, 李亚静, 范吉平. 康柏西普治疗脉络膜骨瘤继发视网膜脱离1例[J]. 临床眼科杂志, 2018, 26(2): 185-186. DOI: 10.3969/j.issn.1006-8422.2018.02.028.Ma N, Li YJ, Fan JP. Conbercept for the treatment of retinal detachment secondary to choroidal osteoma: a case report[J]. J Clin Ophthalmol, 2018, 26(2): 185-186. DOI: 10.3969/j.issn.1006-8422.2018.02.028.
- 18. Shah SU, Mashayekhi A, Shields CL, et al. Uveal metastasis from lung cancer: clinical features, treatment, and outcome in 194 patients[J]. Ophthalmology, 2014, 121(1): 352-357. DOI: 10.1016/j.ophtha.2013.07.014.
- 19. Mathis T, Jardel P, Loria O, et al. New concepts in the diagnosis and management of choroidal metastasis[J]. Prog Retin Eye Res, 2019, 68: 144-176. DOI: 10.1016/j.preteyeres.2018.09.003.
- 20. Arepalli S, Kaliki S, Shields CL. Choroidal metastases: origin, features, and therapy[J]. Indian J Ophthalmol, 2015, 63(2): 122-127. DOI: 10.4103/0301-4738.154380.
- 21. Maudgil A, Sears KS, Rundle PA, et al. Failure of intravitreal bevacizumab in the treatment of choroidal metastasis[J]. Eye (lond), 2015, 29(5): 707-711. DOI: 10.1038/eye.2015.21.
- 22. Singh N, Bansal R, Behera D, et al. Intravitreal bevacizumab for choroidal metastases: the key to efficacy is simultaneous administration of systemic therapy[J]. Eye (Lond), 2015, 29(12): 1629. DOI: 10.1038/eye.2015.176.
- 23. Lin CJ, Tsai YY. The effect of intravitreal bevacizumab and transpupillary thermotherapy on choroidal metastases and literature review[J]. Indian J Ophthalmol, 2015, 63(1): 37-41. DOI: 10.4103/0301-4738.151465.
- 24. Hussain RN, Heimann H, Damato B. Neoadjuvant intravitreal ranibizumab treatment in high risk ocular melanoma patients: a two stage single-centre phase Ⅱ single-arm study[J]. Melanoma Res, 2020, 30(1): 102-106. DOI: 10.1097/CMR.0000000000000635.
- 25. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival[J]. Ophthalmology, 2011, 118(9): 1881-1885. DOI: 10.1016/j.ophtha.2011.01.040.
- 26. Boyd SR, Tan D, Bunce C, et al. Vascular endothelial growth factor is elevated in ocular fluids of eyes harbouring uveal melanoma: identification of a potential therapeutic window[J]. Br J Ophthalmol, 2002, 86(4): 448-452. DOI: 10.1136/bjo.86.4.448.
- 27. Missotten GS, Notting IC, Schlingemann RO, et al. Vascular endothelial growth factor a in eyes with uveal melanoma[J]. Arch Ophthalmol, 2006, 124(10): 1428-1434. DOI: 10.1001/archopht.124.10.1428.
- 28. El Filali M, Van der Velden PA, Luyten GPM, et al. Antiangiogenic therapy in uveal melanoma[J]. Dev Ophthalmol, 2012, 49: 117-136. DOI: 10.1159/000329591.
- 29. Crosby MB, Yang H, Gao W, et al. Serum vascular endothelial growth factor (VEGF) levels correlate with number and location of micrometastases in a murine model of uveal melanoma[J]. Br J Ophthalmol, 2011, 95(1): 112-117. DOI: 10.1136/bjo.2010.182402.
- 30. Barak V, Pe' er J, Kalickman I, et al. VEGF as biomarker for metastatic uveal melanoma in humans[J]. Curr Eye Res, 2011, 36(4): 386-390. DOI: 10.3109/02713683.2010.534573.
- 31. El Filali M, Ly LV, Luyten GP, et al. Bevacizumab and intraocular tumors: an intriguing paradox[J]. Mol Vis, 2012, 18: 2454-2467.
- 32. Francis JH, Kim J, Lin A, et al. Growth of uveal melanoma following intravitreal bevacizumab[J]. Ocul Ocncol Pathol, 2017, 3(2): 117-121. DOI: 10.1159/000450859.
- 33. Tura A, Pawlik VE, Rudolf M, et al. Uptake of ranibizumab but not bevacizumab into uveal melanoma cells correlates with a sustained decline in VEGF-A levels and metastatic activities[J]. Cancers (Basel), 2019, 11(6): 868. DOI: 10.3390/camcers11060868.
- 34. Lee SY, Kim DK, Cho JH, et al. Inhibitory effect of bevacizumab on the angiogenesis and growth of retinoblastoma[J]. Arch Ophthalmol, 2008, 126(7): 953-958. DOI: 10.1001/archopht.126.7.953.
- 35. Shields CL, Sun H, Demirci H, et al. Factors predictive of tumor growth, tumor decalcification, choroidal neovascularization, and visual outcome in 74 eyes with choroidal osteoma[J]. Arch Ophthalmol, 2005, 123(12): 1658-1666. DOI: 10.1001/archopht.123.12.1658.
- 36. Foster BS, Fernandez-Suntay JP, Dryja TP, et al. Clinicopathologic reports, case reports, and small case series: surgical removal and histopathologic findings of a subfoveal neovascular membrane associated with choroidal osteoma[J]. Arch Ophthalmol, 2003, 121(2): 273-276. DOI: 10.1001/archopht.121.2.273.
- 37. Sagar P, Shanmugam M, Ramanjulu R, et al. OCT angiography characteristics of choroidal osteoma[J]. Ophthalmol Retina, 2018, 2(1): 77-79. DOI: 10.1016/j.oret.2017.05.011.
- 38. Khan MA, DeCroos FC, Storey PP, et al. Outcomes of anti-vascular endothelial growth factor therapy in the management of choroidal neovascularization associated with choroidal osteoma[J]. Retina, 2014, 34(9): 1750-1756. DOI: 10.1097/IAE.0000000000000187.
- 39. Mansour AM, Arevalo JF, AI Kahtani E, et al. Role of intravitreal antivascular endothelial growth injections for choroidal neovascularization due to choroidal osteoma[J/OL]. J Ophthalmol, 2014, 2014: 210458[2014-07-23]. https://pubmed.ncbi.nlm.nih.gov/25147732/. DOI: 10.1155/2014/210458.
- 40. Bouladi M, Bouraoui R, Zerei N, et al. Four-year SD-OCT follow-up of a treated bilateral choroidal osteoma complicated by choroidal neovascularisation[J/OL]. J Fr Ophthalmol, 2018, 41(1): e35-38[2018-01-05]. https://pubmed.ncbi.nlm.nih.gov/29310955/. DOI: 10.1016/j.jfo.2017.03.025.
- 41. Furino C, Di Antonil L, Grassi MO, et al. Choroidal neovascularization due to choroidal osteoma treated with anti-vascular endothelial growth factor therapy: an optical coherence tomography angiography study[J]. Eur J Ophthalmol, 2019, 29(3): 323-329. DOI: 10.1177/1120672118792187.
- 42. Shen C, Yan S, Du M, et al. Assessment of choroidal osteoma complicating choroidal neovascularization by optical coherence tomography angiography[J]. Int Ophthalmol, 2018, 38(2): 787-792. DOI: 10.1007/s10792-017-0503-9.
- 43. Saitta A, Nicolai M, Neri P, et al. Rescue therapy with intravitreal aflibercept for choroidal neovascularization secondary to choroidal osteoma non- responder to intravitreal bevacizumab and ranibizumab[J]. Int Ophthalmol, 2015, 35(3): 441-444. DOI: 10.1007/s10792-015-0059-5.
- 44. Yoshikawa T, Takahashi K. Long-term outcomes of intravitreal injection of bevacizumab for choroidal neovascularization associated with choroidal oateoma[J]. Clin Ophthalmol, 2015, 9: 429-437. DOI: 10.2147/OPTH.S78817.
- 45. Song JH, Bae JH, Lee SC. Intravitreal bevacizumab in the management of subretinal fluid associated with choroidal osteoma[J]. Retina, 2010, 30(6): 945-951. DOI: 10.1097/IAE.0b013e3181c720ca.
- 46. Najafabadi FF, Hendimarjan SM, Zarrin Y, et al. Intravitreal bevacizumab for management of choroidal osteoma without choroidal neovascularization[J]. J Ophthalmol Vis Res, 2015, 10(4): 484-486. DOI: 10.4103/2008-322X.176905.
- 47. Vayalambrone D, Misra A. Paediatric choroidal osteoma treated with ranibizumab[J/OL]. BMJ Case Rep, 2012, 2012: bcr2012007446[2012-11-28]. https://pubmed.ncbi.nlm.nih.gov/23192581/. DOI: 10.1136/bcr-2012-007-007446.
- 48. Matet A, Daruich A, Zografos L. Radiation maculopathy after proton beam therapy for uveal melanoma: optical coherence tomography angiography alterations influencing visual acuity[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 3851-3861. DOI: 10.1167/iovs.17-22324.
- 49. Horgan N, Shields CL, Mashayekhi A, et al. Classification and treatment of radiation maculopathy[J]. Curr Opin Ophthalmol, 2010, 21(3): 233-238. DOI: 10.1097/ICU.0b013e3283386687.
- 50. Horowitz SA, Damasceno NP, Damasceno EF, et al. Treatment of radiation retinopathy with intravitreal injection of ranibizumab (Lucentis®)[J]. Int Med Case Rep J, 2020, 13: 27-32. DOI: 10.2147/IMCRJ.S191654.
- 51. Schefler AC, Fuller D, Anand R, et al. Randomized trial of monthly versus as-needed intravitreal ranibizumab for radiation retinopathy-related macular edema: 1 year outcomes[J]. Am J Ophthalmol, 2020, 216: 165-173. DOI: 10.1016/j.ajo.2020.03.045.
- 52. Fallico M, Reibaldi M, Avitabile T, et al. Intravitreal aflibercept for the treatment of radiation-induced macular edema after ruthenium 106 plaque radiotherapy for choroidal melanoma[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1547-1554. DOI: 10.1007/s00417-019-04347-6.
- 53. Shah SU, Shields CL, Bianciotto CG, et al. Intravitreal bevacizumab at 4-month intervals for pevention of macular edema after plaque radiotherapy of uveal melanoma[J]. Ophthalmology, 2014, 121(1): 269-275. DOI: 10.1016/j.ophtha.2013.08.039.
- 54. Kim IK, Lane AM, Jain P, et al. Ranibizumab for the prevention of radiation complications in patients treated with proton beam irradiation for choroidal melanoma[J/OL]. Trans Am Ophthalmol Soc, 2016, 114: T2[2016-08-01]. https://pubmed.ncbi.nlm.nih.gov/27630373/.
- 55. Haji Mohd Yasin NA, Gray AR, Bevin TH, et al. Choroidal melanoma treated with stereotactic fractionated radiotherapy and prophylactic intravitreal bevacizumab: the Dunedin hospital experience[J]. J Med Imaging Radiat Oncol, 2016, 60(6): 756-763. DOI: 10.1111/1754-9485.12489.
- 56. Chang M, Dalvin LA, Mazloumi M, et al. Prophylactic intravitreal bevacizumab after plaque radiotherapy for uveal melanoma: analysis of visual acuity, tumor rsponse, and radiation complications in 1131 eyes based on patient age[J]. Asia Pac J Ophthalmol (Phila), 2020, 9(1): 29-38. DOI: 10.1097/APO.0000000000000271.
- 57. Yang X, Dalvin LA, Mazloumi M, et al. Impact of uveal melanoma thickness on post-plaque radiotherapy outcomes in the prophylactic anti-vascular endothelial growth factor era in 1131 patients[J]. Clin Exp Ophthalmol, 2020, 48(5): 610-623. DOI: 10.1111/ceo.13758.
-
Previous Article
视网膜分支静脉阻塞并视盘新生血管 -
Next Article
Research progress of Müller cell and macular hole