- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
Inherited retinal diseases (IRDs) are the major cause of refractory blinding eye diseases, and gene replacement therapy has already made preliminary progress in the treatment of IRDs. For IRDs that cannot be treated by gene replacement therapy, gene editing provides an alternative therapeutic method. Strategies like disruption of pathogenic variants with or without gene augmentation therapy and precise repair of pathogenic variants can be applied for IRDs with various inheritance patterns and pathogenic variants. In animal models of retinitis pigmentosa, Usher syndrome, Leber congenital amaurosis, cone rod cell dystrophy, and other disorders, CRISPR/Cas9, base editing, and prime editing showed the potential to edit pathogenic variations in vivo, indicating a promising future for gene editing therapy of IRDs.
Citation: She Kaiqin, Chen Qin, Lu Fang. The progress of the gene editing therapy of inherited retinal diseases based on CRISPR/Cas9. Chinese Journal of Ocular Fundus Diseases, 2023, 39(7): 605-610. doi: 10.3760/cma.j.cn511434-20220908-00493 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Schneider N, Sundaresan Y, Gopalakrishnan P, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities[J/OL]. Prog Retin Eye Res, 2021, 89: 101029[2021/11/25]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(21)00090-2. DOI: 10.1016/j.preteyeres.2021.101029. |
2. |
|
3. |
|
4. | Tornabene P, Trapani I, Minopoli R, et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina[J/OL]. Sci Transl Med, 2019, 11(492): eaav4523[2019-05-15]. https://europepmc.org/article/MED/31092694. DOI: 10.1126/scitranslmed.aav4523. |
5. | Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa[J/OL]. Int J Mol Sci, 2019, 20(10): 2542[2019/05/28]. https://europepmc.org/article/MED/31126147. DOI: 10.3390/ijms20102542. |
6. |
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. | Chen P, Hussmann J, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J]. Cell, 2021, 184(22): 5635-5652. DOI: 10.1016/j.cell.2021.09.018. |
22. |
|
23. |
|
24. |
|
25. | Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J/OL]. Nat Commun, 2017, 8: 14716[2017-5-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355895/. DOI: 10.1038/ncomms14716. |
26. |
|
27. |
|
28. |
|
29. |
|
30. | Jo D, Song D, Cho C, et al. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J/OL]. Sci Adv, 2019, 5(10): eaax1210[2019-10-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821465/. DOI: 10.1126/sciadv.aax1210. |
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
|
38. |
|
39. |
|
40. |
|
41. |
|
42. |
|
43. |
|
44. |
|
45. |
|
46. |
|
47. |
|
48. |
|
49. | Kondkar A, Abu-Amero K. Leber congenital amaurosis: current genetic basis, scope for genetic testing and personalized medicine[J/OL]. Exp Eye Res, 2019, 189: 107834[2019-10-19]. https://linkinghub.elsevier.com/retrieve/pii/S0014-4835(19)30266-0. DOI: 10.1016/j.exer.2019.107834. |
50. |
|
51. |
|
52. |
|
53. |
|
54. |
|
55. |
|
56. |
|
57. |
|
58. |
|
59. |
|
60. |
|
61. |
|
- 1. Schneider N, Sundaresan Y, Gopalakrishnan P, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities[J/OL]. Prog Retin Eye Res, 2021, 89: 101029[2021/11/25]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(21)00090-2. DOI: 10.1016/j.preteyeres.2021.101029.
- 2.
Russell S, Bennett J, Wellman JA, et al Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet2017 390 10097 849 860 . DOI:10.1016/s0140-6736(17)31868-8 . - 3.
Arbabi A, Liu A, Ameri H Gene therapy for inherited retinal degeneration[J]. J Ocul Pharmacol Ther2019 35 2 79 97 . DOI:10.1089/jop.2018.0087 . - 4. Tornabene P, Trapani I, Minopoli R, et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina[J/OL]. Sci Transl Med, 2019, 11(492): eaav4523[2019-05-15]. https://europepmc.org/article/MED/31092694. DOI: 10.1126/scitranslmed.aav4523.
- 5. Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa[J/OL]. Int J Mol Sci, 2019, 20(10): 2542[2019/05/28]. https://europepmc.org/article/MED/31126147. DOI: 10.3390/ijms20102542.
- 6.
Jinek M, Chylinski K, Fonfara I, et al A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science2012 337 6096 816 821 . DOI:10.1126/science.1225829 . - 7.
Cho S, Kim S, Kim JM, et al Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat Biotechnol2013 31 3 230 232 . DOI:10.1038/nbt.2507 . - 8.
Anzalone A, Koblan L, Liu D Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol2020 38 7 824 844 . DOI:10.1038/s41587-020-0561-9 . - 9.
Kleinstiver B, Prew M, Tsai S, et al Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature2015 523 7561 481 485 . DOI:10.1038/nature14592 . - 10.
Nishimasu H, Shi X, Ishiguro S, et al Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science2018 361 6408 1259 1262 . DOI:10.1126/science.aas9129 . - 11.
Yeh C, Richardson C, Corn J Advances in genome editing through control of DNA repair pathways[J]. Nat Cell Biol2019 21 12 1468 1478 . DOI:10.1038/s41556-019-0425-z . - 12.
Heyer WD, Ehmsen K, Liu J Regulation of homologous recombination in eukaryotes[J]. Annu Rev Genet2010 44 113 139 . DOI:10.1146/annurev-genet-051710-150955 . - 13.
Lieber R The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem2010 79 181 211 . DOI:10.1146/annurev.biochem.052308.093131 . - 14.
Paquet D, Kwart D, Chen A, et al Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature2016 533 7601 125 129 . DOI:10.1038/nature17664 . - 15.
Komor A, Kim Y, Packer M, et al Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature2016 533 7603 420 424 . DOI:10.1038/nature17946 . - 16.
Anzalone V, Randolph B, Davis R, et al Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature2019 576 7785 149 157 . DOI:10.1038/s41586-019-1711-4 . - 17.
Rees H, Liu D Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet2018 19 12 770 788 . DOI:10.1038/s41576-018-0059-1 . - 18.
Gehrke M, Cervantes O, Clement K, et al An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nat Biotechnol2018 36 10 977 982 . DOI:10.1038/nbt.4199 . - 19.
Wang Q, Yang J, Zhong Z, et al A general theoretical framework to design base editors with reduced bystander effects[J]. Nat Commun2021 12 1 6529 . DOI:10.1038/s41467-021-26789-5 . - 20.
Nelson W, Randolph B, Shen P, et al Engineered pegRNAs improve prime editing efficiency[J]. Nat Biotechnol2021 40 3 402 410 . DOI:10.1038/s41587-021-01039-7 . - 21. Chen P, Hussmann J, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J]. Cell, 2021, 184(22): 5635-5652. DOI: 10.1016/j.cell.2021.09.018.
- 22.
Fry E, McClements E, MacLaren E Analysis of pathogenic variants correctable with CRISPR base editing among patients with recessive inherited retinal degeneration[J]. JAMA Ophthalmol2021 139 3 319 328 . DOI:10.1001/jamaophthalmol.2020.6418 . - 23.
Ruan G, Barry E, Yu D, et al CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10[J]. Mol Ther2017 25 2 331 341 . DOI:10.1016/j.ymthe.2016.12.006 . - 24.
Maeder M, Stefanidakis M, Wilson C, et al Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med2019 25 2 229 233 . DOI:10.1038/s41591-018-0327-9 . - 25. Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J/OL]. Nat Commun, 2017, 8: 14716[2017-5-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355895/. DOI: 10.1038/ncomms14716.
- 26.
Latella M, Salvo M, Cocchiarella F, et al In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina[J]. Mol Ther Nucleic Acids2016 5 11 e389 . DOI:10.1038/mtna.2016.92 . - 27.
Tsai Y, Wu W, Lee T, et al Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa[J]. Ophthalmology2018 125 9 1421 1430 . DOI:10.1016/j.ophtha.2018.04.001 . - 28.
Bakondi B, Lv W, Levy R, et al In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther2016 24 3 556 563 . DOI:10.1038/mt.2015.220 . - 29.
Li P, Kleinstiver B, Leon MY, et al Allele-specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant retinitis pigmentosa[J]. CRISPR J2018 1 1 55 64 . DOI:10.1089/crispr.2017.0009 . - 30. Jo D, Song D, Cho C, et al. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J/OL]. Sci Adv, 2019, 5(10): eaax1210[2019-10-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821465/. DOI: 10.1126/sciadv.aax1210.
- 31.
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature2016 540 7631 144 149 . DOI:10.1038/nature20565 . - 32.
Levy J, Butcher R, Yeh W, et al Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses[J]. Nat Biomed Eng2020 4 1 97 110 . DOI:10.1038/s41551-019-0501-5 . - 33.
Suh S, Choi H, Leinonen H, et al Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing[J]. Nat Biomed Eng2021 5 2 169 178 . DOI:10.1038/s41551-020-00632-6 . - 34.
Jang H, Jo H, Cho S, et al Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases[J]. Nat Biomed Eng2021 6 2 181 194 . DOI:10.1038/s41551-021-00788-9 . - 35.
Mears J, Kondo M, Swain K, et al Nrl is required for rod photoreceptor development[J]. Nat Genet2001 29 4 447 452 . DOI:10.1038/ng774 . - 36.
Swaroop A, Kim D, Forrest D Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina[J]. Nat Rev Neurosci2010 11 8 563 576 . DOI:10.1038/nrn2880 . - 37.
Zhu J, Ming C, Fu X, et al Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors[J]. Cell Res2017 27 6 830 833 . DOI:10.1038/cr.2017.57 . - 38.
Bruninx R, Lepièce G Retinitis pigmentosa[J]. Rev Med Liege2020 75 2 73 74 . - 39.
Dias F, Joo K, Kemp A, et al Molecular genetics and emerging therapies for retinitis pigmentosa: basic research and clinical perspectives[J]. Prog Retin Eye Res2018 63 107 131 . DOI:10.1016/j.preteyeres.2017.10.004 . - 40.
Tsang S, Sharma T Autosomal dominant retinitis pigmentosa[J]. Adv Exp Med Biol2018 1085 69 77 . DOI:10.1007/978-3-319-95046-4_15 . - 41.
Burnight E, Gupta M, Wiley L, et al Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration[J]. Mol Ther2017 25 9 1999 2013 . DOI:10.1016/j.ymthe.2017.05.015 . - 42.
Giannelli S, Luoni M, Castoldi V, et al Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9. PHP. B-based delivery[J]. Hum Mol Genet2018 27 5 761 779 . DOI:10.1093/hmg/ddx438 . - 43.
Coppieters F, Leroy BP, Beysen D, et al Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa[J]. Am J Hum Genet2007 81 1 147 157 . DOI:10.1086/518426 . - 44.
Diakatou M, Dubois G, Erkilic N, et al Allele-specific knockout by CRISPR/Cas to Treat autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3[J]. Int J Mol Sci2021 22 5 2607 . DOI:10.3390/ijms22052607 . - 45.
Fuster-García C, García-García G, González-Romero E, et al USH2A gene editing using the CRISPR system[J]. Mol Ther Nucleic Acids2017 8 529 541 . DOI:10.1016/j.omtn.2017.08.003 . - 46.
Panagiotopoulos L, Karguth N, Pavlou M, et al Antisense oligonucleotide- and CRISPR-Cas9-mediated rescue of mRNA splicing for a deep intronic CLRN1 mutation[J]. Mol Ther Nucleic Acids2020 21 1050 1061 . DOI:10.1016/j.omtn.2020.07.036 . - 47.
Koenekoop R An overview of Leber congenital amaurosis: a model to understand human retinal development[J]. Surv Ophthalmol2004 49 4 379 398 . DOI:10.1016/j.survophthal.2004.04.003 . - 48.
Stone E, Andorf J, Whitmore S, et al Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease[J]. Ophthalmology2017 124 9 1314 1331 . DOI:10.1016/j.ophtha.2017.04.008 . - 49. Kondkar A, Abu-Amero K. Leber congenital amaurosis: current genetic basis, scope for genetic testing and personalized medicine[J/OL]. Exp Eye Res, 2019, 189: 107834[2019-10-19]. https://linkinghub.elsevier.com/retrieve/pii/S0014-4835(19)30266-0. DOI: 10.1016/j.exer.2019.107834.
- 50.
Sheck L, Davies W, Moradi P, et al Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies[J]. Ophthalmology2018 125 6 894 903 . DOI:10.1016/j.ophtha.2017.12.013 . - 51.
Ledford H CRISPR treatment inserted directly into the body for first time[J]. Nature2020 579 7798 185 . DOI:10.1038/d41586-020-00655-8 . - 52.
Jacobson S, Cideciyan A, Roman A, et al Improvement and decline in vision with gene therapy in childhood blindness[J]. N Engl J Med2015 372 20 1920 1926 . DOI:10.1056/NEJMoa1412965 . - 53.
Bainbridge J, Mehat M, Sundaram V, et al Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med2015 372 20 1887 1897 . DOI:10.1056/NEJMoa1414221 . - 54.
Choi H, Suh S, Foik T, et al In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration[J]. Nat Commun2022 13 1 1830 . DOI:10.1038/s41467-022-29490-3 . - 55.
Mukherjee R, Robson A, Holder G, et al A detailed phenotypic description of autosomal dominant cone dystrophy due to a de novo mutation in the GUCY2D gene[J]. Eye2014 28 4 481 487 . DOI:10.1038/eye.2014.7 . - 56.
McCullough K, Boye S, Fajardo D, et al Somatic gene editing of GUCY2D by AAV-CRISPR/Cas9 alters retinal structure and function in mouse and macaque[J]. Hum Gene Ther2019 30 5 571 589 . DOI:10.1089/hum.2018.193 . - 57.
Zheng N, Li L, Wang X Molecular mechanisms, off-target activities, and clinical potentials of genome editing systems[J]. Clin Transl Med2020 10 1 412 426 . DOI:10.1002/ctm2.34 . - 58.
Naeem M, Majeed S, Hoque MZ, et al Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing[J]. Cells2020 9 7 1608 . DOI:10.3390/cells9071608 . - 59.
Zuo E, Sun Y, Wei W, et al Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science2019 364 6437 289 292 . DOI:10.1126/science.aav9973 . - 60.
Park S and Beal A Off-Target Editing by CRISPR-Guided DNA Base Editors[J]. Biochemistry2019 58 36 3727 3734 . DOI:10.1021/acs.biochem.9b00573 . - 61.
Kim Y, Moon B, Ko H, et al Unbiased investigation of specificities of prime editing systems in human cells[J]. Nucleic Acids Res2020 48 18 10576 10589 . DOI:10.1093/nar/gkaa764 .