- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China;
Central serous chorioretinopathy (CSC) is one of the representative pachychoroid spectrum disease. Although fundus fluorescein angiography and indocyanine green angiography can be used as the gold standard for the diagnosis of CSC, they are invasive examinations, which may bring certain risks in clinical application and cannot help us obtain quantitative parameters. Optical coherence tomography angiography (OCTA), as a non-invasive and quantitative examination, is an important imaging tool for understanding the pathogenesis, diagnosis and treatment of CSC. With the advancement of OCTA, the swept-source OCTA has a satisfying scanning depth, a wider scanning range and a higher resolution. The development of OCTA broadens the horizons of the pathogenesis of CSC, promotes the understanding of the pathophysiology of CSC, and sheds new light for its clinical diagnosis and treatment. Based on OCTA, the choroid and retina in eyes with CSC are presented with qualitative and quantitative changes in vascular system. OCTA-guided CSC treatment and the discovery of prognostic markers based on OCTA challenge the application of traditional imaging techniques in CSC. With the continuous improvement and progress of OCTA technology, traditional angiography combined with OCTA will bring great benefits to the diagnosis and treatment of CSC. This review summarizes the quantitative application of OCTA in the pathogenesis, diagnosis and treatment of CSC.
Citation: Zeng Qiaozhu, Yao Yuou, Tu Shu, Zhao Mingwei. Advances in application of optical coherence tomography angiography for quantitative analysis in central serous chorioretinopathy. Chinese Journal of Ocular Fundus Diseases, 2023, 39(4): 347-354. doi: 10.3760/cma.j.cn511434-20230208-00050 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis[J]. Prog Retin Eye Res, 2015, 48: 82-118. DOI: 10.1016/j.preteyeres.2015.05.003. |
2. | Kishi S, Matsumoto H, Sonoda S, et al. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy[J/OL]. PLoS One, 2018, 13(11): e0206646[2018-11-09]. https://europepmc.org/article/MED/30412594. DOI: 10.1371/journal.pone.0206646. |
3. | Terao N, Koizumi H, Kojima K, et al. Association of upregulated angiogenic cytokines with choroidal abnormalities in chronic central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5924-5931. DOI: 10.1167/iovs.18-25517. |
4. | Erol MK, Balkarli A, Yucel O, et al. Neutrophil/lymphocyte ratio and mean platelet volume in central serous chorioretinopathy[J]. Ther Clin Risk Manag, 2017, 13: 945-950. DOI: 10.2147/TCRM.S138581. |
5. | Kanda P, Gupta A, Gottlieb C, et al. Pathophysiology of central serous chorioretinopathy: a literature review with quality assessment[J]. Eye (Lond), 2022, 36(5): 941-962. DOI: 10.1038/s41433-021-01808-3. |
6. | Spaide RF. Choroidal blood flow: review and potential explanation for the choroidal venous anatomy including the vortex vein system[J]. Retina, 2020, 40(10): 1851-1864. DOI: 10.1097/IAE.0000000000002931. |
7. | Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders[J/OL]. Prog Retin Eye Res, 2022, 86: 100973[2021-05-21]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(21)00034-3. DOI: 10.1016/j.preteyeres.2021.100973. |
8. | Tagawa M, Ooto S, Yamashiro K, et al. Choriocapillaris flow deficit in a pachychoroid spectrum disease using en face optical coherence tomography angiography averaging[J/OL]. PLoS One, 2022, 17(9): e0271747[2022-09-12]. https://europepmc.org/abstract/MED/36094941. DOI: 10.1371/journal.pone.0271747. |
9. | Chu Z, Zhang Q, Gregori G, et al. Guidelines for imaging the choriocapillaris using oct angiography[J]. Am J Ophthalmol, 2021, 222: 92-101. DOI: 10.1016/j.ajo.2020.08.045. |
10. | Zhou K, Song S, Zhang Q, et al. Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes[J]. Biomed Opt Express, 2019, 10(6): 2847-2860. DOI: 10.1364/BOE.10.002847. |
11. | Marsh-Armstrong B, Migacz J, Jonnal R, et al. Automated quantification of choriocapillaris anatomical features in ultrahigh-speed optical coherence tomography angiograms[J]. Biomed Opt Express, 2019, 10(10): 5337-5350. DOI: 10.1364/BOE.10.005337. |
12. | Shinojima A, Kawamura A, Mori R, et al. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy[J]. Ophthalmologica, 2016, 236(2): 108-113. DOI: 10.1159/000448436. |
13. | Qu Y, Gong D, Yu W, et al. Characteristics of the choriocapillaris layer in optical coherence tomography angiography of acute central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(12): 1000-1005. DOI: 10.3928/23258160-20171130-07. |
14. | Feucht N, Maier M, Lohmann C P, et al. OCT angiography findings in acute central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(4): 322-327. DOI: 10.3928/23258160-20160324-03. |
15. | Reich M, Böhringer D, Cakir B, et al. Longitudinal analysis of the choriocapillaris using optical coherence tomography angiography reveals subretinal fluid as a substantial confounder in patients with acute central serous chorioretinopathy[J]. Ophthalmol Ther, 2019, 8(4): 599-610. DOI: 10.1007/s40123-019-00218-9. |
16. | Rochepeau C, Kodjikian L, Garcia MA, et al. Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy[J]. Am J Ophthalmol, 2018, 194: 26-34. DOI: 10.1016/j.ajo.2018.07.004. |
17. | Burnasheva MA, Kulikov AN, Maltsev DS. Artifact-free evaluation of choriocapillaris perfusion in central serous chorioretinopathy[J]. Vision (Basel), 2020, 5(1): 3. DOI: 10.3390/vision5010003. |
18. | Nicolò M, Rosa R, Musetti D, et al. Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2002-2010. DOI: 10.1167/iovs.17-21417. |
19. | Zhang L, Van Dijk EHC, Borrelli E, et al. OCT and OCT angiography update: clinical application to age-related macular degeneration, central serous chorioretinopathy, macular telangiectasia, and diabetic retinopathy[J]. Diagnostics (Basel), 2023, 13(2): 232. DOI: 10.3390/diagnostics13020232. |
20. | Saito M, Saito W, Hirooka K, et al. Pulse waveform changes in macular choroidal hemodynamics with regression of acute central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6515-6522. DOI: 10.1167/iovs.15-17246. |
21. | Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180. DOI: 10.1097/IAE.0000000000000765. |
22. | Lee WJ, Lee JW, Park SH, et al. En face choroidal vascular feature imaging in acute and chronic central serous chorioretinopathy using swept source optical coherence tomography[J]. Br J Ophthalmol, 2017, 101(5): 580-586. DOI: 10.1136/bjophthalmol-2016-308428. |
23. | Roberta F, Arturo C, Maurizio F. Optical coherence tomography angiography of central serous chorioretinopathy: quantitative evaluation of the vascular pattern and capillary flow density[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(3): 1015-1024. DOI: 10.1007/s00417-021-05306-w. |
24. | Seo EJ, Um T, Yoon YH. Abnormal choroidal flow on optical coherence tomography angiography in central serous chorioretinopathy[J]. Clin Exp Ophthalmol, 2019, 47(4): 505-512. DOI: 10.1111/ceo.13454. |
25. | Hu J, Qu J, Piao Z, et al. Optical coherence tomography angiography compared with indocyanine green angiography in central serous chorioretinopathy[J]. Sci Rep, 2019, 9(1): 6149. DOI: 10.1038/s41598-019-42623-x. |
26. | Teussink MM, Breukink MB, van Grinsven MJ, et al. OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5229-5237. DOI: 10.1167/iovs.15-17140. |
27. | Li XQ, Heegaard S, Kiilgaard JF, et al. Enhanced-depth imaging optical coherence tomography of the human choroid in vivo compared with histology after enucleation[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT371-376. DOI: 10.1167/iovs.15-18884. |
28. | Xie R, Qiu B, Chhablani J, et al. Evaluation of choroidal thickness using optical coherent tomography: a review[J/OL]. Front Med (Lausanne), 2021, 8: 783519[2021-12-03]. https://europepmc.org/article/MED/34926529. DOI: 10.3389/fmed.2021.783519. |
29. | Funatsu R, Sonoda S, Terasaki H, et al. Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(4): 971-979. DOI: 10.1007/s00417-022-05905-1. |
30. | Zeng Q, Yao Y, Tu S, et al. Quantitative analysis of choroidal vasculature in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography[J]. Sci Rep, 2022, 12(1): 18427. DOI: 10.1038/s41598-022-23389-1. |
31. | Zeng Q, Yao Y, Li S, et al. Comparison of swept-source OCTA and indocyanine green angiography in central serous chorioretinopathy[J]. BMC Ophthalmol, 2022, 22(1): 380. DOI: 10.1186/s12886-022-02607-4. |
32. | De Bats F, Cornut P L, Wolff B, et al. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography[J]. Eur J Ophthalmol, 2018, 28(4): 446-453. DOI: 10.1177/1120672118758401. |
33. | Ishikura M, Muraoka Y, Nishigori N, et al. Widefield choroidal thickness of eyes with central serous chorioretinopathy examined by swept-source OCT[J]. Ophthalmol Retina, 2022, 6(10): 949-956. DOI: 10.1016/j.oret.2022.04.011. |
34. | Agrawal R, Chhablani J, Tan KA, et al. Choroidal vascularity index in central serous chorioretinopathy[J]. Retina, 2016, 36(9): 1646-1651. DOI: 10.1097/IAE.0000000000001040. |
35. | Yang J, Wang E, Yuan M, et al. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(2): 241-247. DOI: 10.1007/s00417-019-04524-7. |
36. | Matsumoto H, Hoshino J, Arai Y, et al. Quantitative measures of vortex veins in the posterior pole in eyes with pachychoroid spectrum diseases[J]. Sci Rep, 2020, 10(1): 19505. DOI: 10.1038/s41598-020-75789-w. |
37. | Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy[J]. Ophthalmol Retina, 2018, 2(2): 152-161. DOI: 10.1016/j.oret.2017.05.013. |
38. | Terao N, Imanaga N, Wakugawa S, et al. Ciliochoroidal effusion in central serous chorioretinopathy[J]. Retina, 2022, 42(4): 730-737. DOI: 10.1097/IAE.0000000000003376. |
39. | Shiragami C, Takasago Y, Osaka R, et al. Clinical features of central serous chorioretinopathy with type 1 choroidal neovascularization[J]. Am J Ophthalmol, 2018, 193: 80-86. DOI: 10.1016/j.ajo.2018.06.009. |
40. | Yeo JH, Oh R, Kim YJ, et al. Choroidal neovascularization secondary to central serous chorioretinopathy: oct angiography findings and risk factors[J/OL]. J Ophthalmol, 2020, 2020: 7217906[2020-02-07]. https://europepmc.org/article/MED/32089870. DOI: 10.1155/2020/7217906. |
41. | Zhou X, Komuku Y, Araki T, et al. Risk factors and characteristics of central serous chorioretinopathy with later development of macular neovascularisation detected on OCT angiography: a retrospective multicentre observational study[J/OL]. BMJ Open Ophthalmol, 2022, 7(1): e000976[2022-04-01]. https://europepmc.org/article/MED/35537029. DOI: 10.1136/bmjophth-2022-000976. |
42. | Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization[J]. Am J Ophthalmol, 2015, 160(1): 6-16. DOI: 10.1016/j.ajo.2015.04.012. |
43. | Costanzo E, Cohen SY, Miere A, et al. Optical coherence tomography angiography in central serous chorioretinopathy[J/OL]. J Ophthalmol, 2015, 2015: 134783[2015-11-08]. https://europepmc.org/article/MED/26634150. DOI: 10.1155/2015/134783. |
44. | Romdhane K, Mantel I. Choroidal neovascularisation complicating chronic central serous chorioretinopathy: the discovery rate on multimodal imaging[J]. Klin Monbl Augenheilkd, 2019, 236(4): 536-541. DOI: 10.1055/a-0834-6118. |
45. | Bonini Filho MA, de Carlo TE, Ferrara D, et al. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(8): 899-906. DOI: 10.1001/jamaophthalmol.2015.1320. |
46. | Bousquet E, Bonnin S, Mrejen S, et al. Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy[J]. Retina, 2018, 38(3): 629-638. DOI: 10.1097/IAE.0000000000001580. |
47. | Sulzbacher F, Schütze C, Burgmüller M, et al. Clinical evaluation of neovascular and non-neovascular chronic central serous chorioretinopathy (CSC) diagnosed by swept source optical coherence tomography angiography (SS-OCTA)[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(8): 1581-1590. DOI: 10.1007/s00417-019-04297-z. |
48. | Ng DS, Ho M, Chen LJ, et al. Optical coherence tomography angiography compared with multimodal imaging for diagnosing neovascular central serous chorioretinopathy[J]. Am J Ophthalmol, 2021, 232: 70-82. DOI: 10.1016/j.ajo.2021.05.029. |
49. | Aggarwal K, Agarwal A, Deokar A, et al. Distinguishing features of acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy on optical coherence tomography angiography and en face optical coherence tomography imaging[J]. J Ophthalmic Inflamm Infect, 2017, 7(1): 3. DOI: 10.1186/s12348-016-0122-z. |
50. | Battista M, Borrelli E, Parravano M, et al. OCTA characterisation of microvascular retinal alterations in patients with central serous chorioretinopathy[J]. Br J Ophthalmol, 2020, 104(10): 1453-1457. DOI: 10.1136/bjophthalmol-2019-315482. |
51. | Lim JS, Moon C, Lee J. Subretinal fluid disturbs the retinal venous blood flow in central serous chorioretinopathy[J]. Sci Rep, 2022, 12(1): 4903. DOI: 10.1038/s41598-022-08865-y. |
52. | Dursun ME, Erdem S, Karahan M, et al. Evaluation of parafoveal vascular density using optical coherence tomography angiography in patients with central serous chorioretinopathy[J]. Lasers Med Sci, 2022, 37(2): 1147-1154. DOI: 10.1007/s10103-021-03366-2. |
53. | Podkowinski D, Foessl B, de Sisternes L, et al. Early alterations in retinal microvasculature on swept-source optical coherence tomography angiography in acute central serous chorioretinopathy[J]. Sci Rep, 2021, 11(1): 3129. DOI: 10.1038/s41598-021-82650-1. |
54. | Mao J, Lin J, Zhu L, et al. Quantitative assessment of retinal capillary vessel density and foveal avascular zone area in central serous chorioretinopathy using OCTA[J]. Ophthalmologica, 2020, 243(5): 370-378. DOI: 10.1159/000504053. |
55. | Han KJ, Kim HJ, Woo JM, et al. Comparison of retinal layer thickness and capillary vessel density in the patients with spontaneously resolved acute central serous chorioretinopathy[J]. J Clin Med, 2020, 10(1): 45. DOI: 10.3390/jcm10010045. |
56. | Kim AY, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT362-370. DOI: 10.1167/iovs.15-18904. |
57. | Gawęcki M, Jaszczuk-Maciejewska A, Jurska-Jaśko A, et al. Impairment of visual acuity and retinal morphology following resolved chronic central serous chorioretinopathy[J]. BMC Ophthalmol, 2019, 19(1): 160. DOI: 10.1186/s12886-019-1171-5. |
58. | Liu J, Chen C, Li L, et al. Assessment of choriocapillary blood flow changes in response to half-dose photodynamic therapy in chronic central serous chorioretinopathy using optical coherence tomography angiography[J]. BMC Ophthalmol, 2020, 20(1): 402. DOI: 10.1186/s12886-020-01674-9. |
59. | Fernández-Vigo JI, Moreno-Morillo FJ, Ortega-Hortas M, et al. Early changes in choriocapillaris flow voids as an efficacy biomarker of photodynamic therapy in central serous chorioretinopathy[J/OL]. Photodiagnosis Photodyn Ther, 2022, 38: 102862[2021-04-11]. https://www.sciencedirect.com/science/article/abs/pii/S1572100022001508. DOI: 10.1016/j.pdpdt.2022.102862. |
60. | Alovisi C, Piccolino FC, Nassisi M, et al. Choroidal structure after half-dose photodynamic therapy in chronic central serous chorioretinopathy[J]. J Clin Med, 2020, 9(9): 2734. DOI: 10.3390/jcm9092734. |
61. | Cennamo G, Montorio D, Comune C, et al. Study of vessel density by optical coherence tomography angiography in patients with central serous chorioretinopathy after low-fluence photodynamic therapy[J/OL]. Photodiagnosis Photodyn Ther, 2020, 30: 101742[2020-03-18]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(20)30095-8. DOI: 10.1016/j.pdpdt.2020.101742. |
62. | Nassisi M, Lavia C, Alovisi C, et al. Short-term choriocapillaris changes in patients with central serous chorioretinopathy after half-dose photodynamic therapy[J]. Int J Mol Sci, 2017, 18(11): 2468. DOI: 10.3390/ijms18112468. |
63. | Demirel S, Özcan G, Yanık Ö, et al. Vascular and structural alterations of the choroid evaluated by optical coherence tomography angiography and optical coherence tomography after half-fluence photodynamic therapy in chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(5): 905-912. DOI: 10.1007/s00417-018-04226-6. |
64. | Fujita K, Kawamura A, Yuzawa M. Choriocapillaris changes imaged by oct angiography after half-dose photodynamic therapy for chronic central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 302-310. DOI: 10.3928/23258160-20170329-04. |
65. | Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: preliminary results[J]. Photodiagnosis Photodyn Ther, 2018, 21: 375-378. DOI: 10.1016/j.pdpdt.2018.01.015. |
66. | Chan SY, Pan CT, Wang Q, et al. Optical coherent tomographic angiographic pattern of the deep choroidal layer and choriocapillaris after photodynamic therapy for central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1365-1372. DOI: 10.1007/s00417-019-04318-x. |
67. | Entezari M, Ansari I, Ramezani A, et al. Superficial retinal microvasculature and choriocapillaris alterations after photodynamic therapy in chronic central serous chorioretinopathy[J/OL]. J Ophthalmol, 2022, 2022: 4024603[2022-07-31]. https://www.hindawi.com/journals/joph/2022/4024603/. DOI: 10.1155/2022/4024603. |
68. | Le HM, Mrejen S, Sibilia L, et al. Optical coherence tomography angiography quantification of choriocapillaris blood-flow after half-fluence photodynamic therapy for chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(8): 2483-2490. DOI: 10.1007/s00417-022-05637-2. |
69. | Xu F, Lai K, Zhou L, et al. Quantitative evaluation of damage to retinal capillaries caused by half-dose and half-time photodynamic therapy with optical coherent tomographic angiography[J/OL]. Photodiagnosis Photodyn Ther, 2021, 36: 102477[2021-08-08]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(21)00301-X. DOI: 10.1016/j.pdpdt.2021.102477. |
70. | Hu YC, Chen YL, Chen YC, et al. 3-year follow-up of half-dose verteporfin photodynamic therapy for central serous chorioretinopathy with OCT-angiography detected choroidal neovascularization[J]. Sci Rep, 2021, 11(1): 13286. DOI: 10.1038/s41598-021-92693-z. |
71. | Guo J, Tang W, Xu S, et al. OCTA evaluation of treatment-naïve flat irregular PED (FIPED)-associated CNV in chronic central serous chorioretinopathy before and after half-dose PDT[J]. Eye (Lond), 2021, 35(10): 2871-2878. DOI: 10.1038/s41433-020-01345-5. |
72. | Müller B, Tatsios J, Klonner J, et al. Navigated laser photocoagulation in patients with non-resolving and chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(9): 1581-1588. DOI: 10.1007/s00417-018-4031-8. |
73. | Prasuhn M, Miura Y, Tura A, et al. Influence of retinal microsecond pulse laser treatment in central serous chorioretinopathy: a short-term optical coherence tomography angiography study[J]. J Clin Med, 2021, 10(11): 2418. DOI: 10.3390/jcm10112418. |
74. | Ho M, Lai FHP, Ng DSC, et al. Analysis of choriocapillaris perfusion and choroidal layer changes in patients with chronic central serous chorioretinopathy randomised to micropulse laser or photodynamic therapy[J]. Br J Ophthalmol, 2021, 105(4): 555-560. DOI: 10.1136/bjophthalmol-2020-316076. |
75. | Sacconi R, Tomasso L, Corbelli E, et al. Early response to the treatment of choroidal neovascularization complicating central serous chorioretinopathy: a OCT-angiography study[J]. Eye (Lond), 2019, 33(11): 1809-1817. DOI: 10.1038/s41433-019-0511-2. |
76. | Cennamo G, Comune C, Mirra F, et al. Choriocapillary vascular density in central serous chorioretinopathy complicated by choroidal neovascularization[J/OL]. Photodiagnosis Photodyn Ther, 2020, 29: 101604[2019-11-017]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(19)30548-4. DOI: 10.1016/j.pdpdt.2019.101604. |
77. | Loo RH, Scott IU, Flynn HW Jr, et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy[J]. Retina, 2002, 22(1): 19-24. DOI: 10.1097/00006982-200202000-00004. |
78. | Schwartz R, Habot-Wilner Z, Martinez MR, et al. Eplerenone for chronic central serous chorioretinopathy-a randomized controlled prospective study[J]. Acta Ophthalmol, 2017, 95(7): 610-618. DOI: 10.1111/aos.13491. |
79. | Rahimy E, Pitcher JD 3rd, Hsu J, et al. A randomized double-blind placebo-control pilot study of eplerenone for the treatment of central serous chorioretinopathy (ecselsior)[J]. Retina, 2018, 38(5): 962-969. DOI: 10.1097/IAE.0000000000001649. |
80. | Zucchiatti I, Sacconi R, Parravano MC, et al. Eplerenone versus observation in the treatment of acute central serous chorioretinopathy: a retrospective controlled study[J]. Ophthalmol Ther, 2018, 7(1): 109-118. DOI: 10.1007/s40123-018-0121-2. |
81. | Lotery A, Sivaprasad S, O'Connell A, et al. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2020, 395(10220): 294-303. DOI: 10.1016/S0140-6736(19)32981-2. |
82. | van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. DOI: 10.1016/j.ophtha.2018.04.021. |
83. | Rabiolo A, Zucchiatti I, Marchese A, et al. Multimodal retinal imaging in central serous chorioretinopathy treated with oral eplerenone or photodynamic therapy[J]. Eye (Lond), 2018, 32(1): 55-66. DOI: 10.1038/eye.2017.290. |
84. | Hu J, Qu J, Li M, et al. Optical coherence tomography angiography-guided photodynamic therapy for acute central serous chorioretinopathy[J]. Retina, 2021, 41(1): 189-198. DOI: 10.1097/IAE.0000000000002795. |
- 1. Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis[J]. Prog Retin Eye Res, 2015, 48: 82-118. DOI: 10.1016/j.preteyeres.2015.05.003.
- 2. Kishi S, Matsumoto H, Sonoda S, et al. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy[J/OL]. PLoS One, 2018, 13(11): e0206646[2018-11-09]. https://europepmc.org/article/MED/30412594. DOI: 10.1371/journal.pone.0206646.
- 3. Terao N, Koizumi H, Kojima K, et al. Association of upregulated angiogenic cytokines with choroidal abnormalities in chronic central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5924-5931. DOI: 10.1167/iovs.18-25517.
- 4. Erol MK, Balkarli A, Yucel O, et al. Neutrophil/lymphocyte ratio and mean platelet volume in central serous chorioretinopathy[J]. Ther Clin Risk Manag, 2017, 13: 945-950. DOI: 10.2147/TCRM.S138581.
- 5. Kanda P, Gupta A, Gottlieb C, et al. Pathophysiology of central serous chorioretinopathy: a literature review with quality assessment[J]. Eye (Lond), 2022, 36(5): 941-962. DOI: 10.1038/s41433-021-01808-3.
- 6. Spaide RF. Choroidal blood flow: review and potential explanation for the choroidal venous anatomy including the vortex vein system[J]. Retina, 2020, 40(10): 1851-1864. DOI: 10.1097/IAE.0000000000002931.
- 7. Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders[J/OL]. Prog Retin Eye Res, 2022, 86: 100973[2021-05-21]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(21)00034-3. DOI: 10.1016/j.preteyeres.2021.100973.
- 8. Tagawa M, Ooto S, Yamashiro K, et al. Choriocapillaris flow deficit in a pachychoroid spectrum disease using en face optical coherence tomography angiography averaging[J/OL]. PLoS One, 2022, 17(9): e0271747[2022-09-12]. https://europepmc.org/abstract/MED/36094941. DOI: 10.1371/journal.pone.0271747.
- 9. Chu Z, Zhang Q, Gregori G, et al. Guidelines for imaging the choriocapillaris using oct angiography[J]. Am J Ophthalmol, 2021, 222: 92-101. DOI: 10.1016/j.ajo.2020.08.045.
- 10. Zhou K, Song S, Zhang Q, et al. Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes[J]. Biomed Opt Express, 2019, 10(6): 2847-2860. DOI: 10.1364/BOE.10.002847.
- 11. Marsh-Armstrong B, Migacz J, Jonnal R, et al. Automated quantification of choriocapillaris anatomical features in ultrahigh-speed optical coherence tomography angiograms[J]. Biomed Opt Express, 2019, 10(10): 5337-5350. DOI: 10.1364/BOE.10.005337.
- 12. Shinojima A, Kawamura A, Mori R, et al. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy[J]. Ophthalmologica, 2016, 236(2): 108-113. DOI: 10.1159/000448436.
- 13. Qu Y, Gong D, Yu W, et al. Characteristics of the choriocapillaris layer in optical coherence tomography angiography of acute central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(12): 1000-1005. DOI: 10.3928/23258160-20171130-07.
- 14. Feucht N, Maier M, Lohmann C P, et al. OCT angiography findings in acute central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2016, 47(4): 322-327. DOI: 10.3928/23258160-20160324-03.
- 15. Reich M, Böhringer D, Cakir B, et al. Longitudinal analysis of the choriocapillaris using optical coherence tomography angiography reveals subretinal fluid as a substantial confounder in patients with acute central serous chorioretinopathy[J]. Ophthalmol Ther, 2019, 8(4): 599-610. DOI: 10.1007/s40123-019-00218-9.
- 16. Rochepeau C, Kodjikian L, Garcia MA, et al. Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy[J]. Am J Ophthalmol, 2018, 194: 26-34. DOI: 10.1016/j.ajo.2018.07.004.
- 17. Burnasheva MA, Kulikov AN, Maltsev DS. Artifact-free evaluation of choriocapillaris perfusion in central serous chorioretinopathy[J]. Vision (Basel), 2020, 5(1): 3. DOI: 10.3390/vision5010003.
- 18. Nicolò M, Rosa R, Musetti D, et al. Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2002-2010. DOI: 10.1167/iovs.17-21417.
- 19. Zhang L, Van Dijk EHC, Borrelli E, et al. OCT and OCT angiography update: clinical application to age-related macular degeneration, central serous chorioretinopathy, macular telangiectasia, and diabetic retinopathy[J]. Diagnostics (Basel), 2023, 13(2): 232. DOI: 10.3390/diagnostics13020232.
- 20. Saito M, Saito W, Hirooka K, et al. Pulse waveform changes in macular choroidal hemodynamics with regression of acute central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6515-6522. DOI: 10.1167/iovs.15-17246.
- 21. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180. DOI: 10.1097/IAE.0000000000000765.
- 22. Lee WJ, Lee JW, Park SH, et al. En face choroidal vascular feature imaging in acute and chronic central serous chorioretinopathy using swept source optical coherence tomography[J]. Br J Ophthalmol, 2017, 101(5): 580-586. DOI: 10.1136/bjophthalmol-2016-308428.
- 23. Roberta F, Arturo C, Maurizio F. Optical coherence tomography angiography of central serous chorioretinopathy: quantitative evaluation of the vascular pattern and capillary flow density[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(3): 1015-1024. DOI: 10.1007/s00417-021-05306-w.
- 24. Seo EJ, Um T, Yoon YH. Abnormal choroidal flow on optical coherence tomography angiography in central serous chorioretinopathy[J]. Clin Exp Ophthalmol, 2019, 47(4): 505-512. DOI: 10.1111/ceo.13454.
- 25. Hu J, Qu J, Piao Z, et al. Optical coherence tomography angiography compared with indocyanine green angiography in central serous chorioretinopathy[J]. Sci Rep, 2019, 9(1): 6149. DOI: 10.1038/s41598-019-42623-x.
- 26. Teussink MM, Breukink MB, van Grinsven MJ, et al. OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(9): 5229-5237. DOI: 10.1167/iovs.15-17140.
- 27. Li XQ, Heegaard S, Kiilgaard JF, et al. Enhanced-depth imaging optical coherence tomography of the human choroid in vivo compared with histology after enucleation[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT371-376. DOI: 10.1167/iovs.15-18884.
- 28. Xie R, Qiu B, Chhablani J, et al. Evaluation of choroidal thickness using optical coherent tomography: a review[J/OL]. Front Med (Lausanne), 2021, 8: 783519[2021-12-03]. https://europepmc.org/article/MED/34926529. DOI: 10.3389/fmed.2021.783519.
- 29. Funatsu R, Sonoda S, Terasaki H, et al. Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(4): 971-979. DOI: 10.1007/s00417-022-05905-1.
- 30. Zeng Q, Yao Y, Tu S, et al. Quantitative analysis of choroidal vasculature in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography[J]. Sci Rep, 2022, 12(1): 18427. DOI: 10.1038/s41598-022-23389-1.
- 31. Zeng Q, Yao Y, Li S, et al. Comparison of swept-source OCTA and indocyanine green angiography in central serous chorioretinopathy[J]. BMC Ophthalmol, 2022, 22(1): 380. DOI: 10.1186/s12886-022-02607-4.
- 32. De Bats F, Cornut P L, Wolff B, et al. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography[J]. Eur J Ophthalmol, 2018, 28(4): 446-453. DOI: 10.1177/1120672118758401.
- 33. Ishikura M, Muraoka Y, Nishigori N, et al. Widefield choroidal thickness of eyes with central serous chorioretinopathy examined by swept-source OCT[J]. Ophthalmol Retina, 2022, 6(10): 949-956. DOI: 10.1016/j.oret.2022.04.011.
- 34. Agrawal R, Chhablani J, Tan KA, et al. Choroidal vascularity index in central serous chorioretinopathy[J]. Retina, 2016, 36(9): 1646-1651. DOI: 10.1097/IAE.0000000000001040.
- 35. Yang J, Wang E, Yuan M, et al. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(2): 241-247. DOI: 10.1007/s00417-019-04524-7.
- 36. Matsumoto H, Hoshino J, Arai Y, et al. Quantitative measures of vortex veins in the posterior pole in eyes with pachychoroid spectrum diseases[J]. Sci Rep, 2020, 10(1): 19505. DOI: 10.1038/s41598-020-75789-w.
- 37. Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy[J]. Ophthalmol Retina, 2018, 2(2): 152-161. DOI: 10.1016/j.oret.2017.05.013.
- 38. Terao N, Imanaga N, Wakugawa S, et al. Ciliochoroidal effusion in central serous chorioretinopathy[J]. Retina, 2022, 42(4): 730-737. DOI: 10.1097/IAE.0000000000003376.
- 39. Shiragami C, Takasago Y, Osaka R, et al. Clinical features of central serous chorioretinopathy with type 1 choroidal neovascularization[J]. Am J Ophthalmol, 2018, 193: 80-86. DOI: 10.1016/j.ajo.2018.06.009.
- 40. Yeo JH, Oh R, Kim YJ, et al. Choroidal neovascularization secondary to central serous chorioretinopathy: oct angiography findings and risk factors[J/OL]. J Ophthalmol, 2020, 2020: 7217906[2020-02-07]. https://europepmc.org/article/MED/32089870. DOI: 10.1155/2020/7217906.
- 41. Zhou X, Komuku Y, Araki T, et al. Risk factors and characteristics of central serous chorioretinopathy with later development of macular neovascularisation detected on OCT angiography: a retrospective multicentre observational study[J/OL]. BMJ Open Ophthalmol, 2022, 7(1): e000976[2022-04-01]. https://europepmc.org/article/MED/35537029. DOI: 10.1136/bmjophth-2022-000976.
- 42. Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization[J]. Am J Ophthalmol, 2015, 160(1): 6-16. DOI: 10.1016/j.ajo.2015.04.012.
- 43. Costanzo E, Cohen SY, Miere A, et al. Optical coherence tomography angiography in central serous chorioretinopathy[J/OL]. J Ophthalmol, 2015, 2015: 134783[2015-11-08]. https://europepmc.org/article/MED/26634150. DOI: 10.1155/2015/134783.
- 44. Romdhane K, Mantel I. Choroidal neovascularisation complicating chronic central serous chorioretinopathy: the discovery rate on multimodal imaging[J]. Klin Monbl Augenheilkd, 2019, 236(4): 536-541. DOI: 10.1055/a-0834-6118.
- 45. Bonini Filho MA, de Carlo TE, Ferrara D, et al. Association of choroidal neovascularization and central serous chorioretinopathy with optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(8): 899-906. DOI: 10.1001/jamaophthalmol.2015.1320.
- 46. Bousquet E, Bonnin S, Mrejen S, et al. Optical coherence tomography angiography of flat irregular pigment epithelium detachment in chronic central serous chorioretinopathy[J]. Retina, 2018, 38(3): 629-638. DOI: 10.1097/IAE.0000000000001580.
- 47. Sulzbacher F, Schütze C, Burgmüller M, et al. Clinical evaluation of neovascular and non-neovascular chronic central serous chorioretinopathy (CSC) diagnosed by swept source optical coherence tomography angiography (SS-OCTA)[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(8): 1581-1590. DOI: 10.1007/s00417-019-04297-z.
- 48. Ng DS, Ho M, Chen LJ, et al. Optical coherence tomography angiography compared with multimodal imaging for diagnosing neovascular central serous chorioretinopathy[J]. Am J Ophthalmol, 2021, 232: 70-82. DOI: 10.1016/j.ajo.2021.05.029.
- 49. Aggarwal K, Agarwal A, Deokar A, et al. Distinguishing features of acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy on optical coherence tomography angiography and en face optical coherence tomography imaging[J]. J Ophthalmic Inflamm Infect, 2017, 7(1): 3. DOI: 10.1186/s12348-016-0122-z.
- 50. Battista M, Borrelli E, Parravano M, et al. OCTA characterisation of microvascular retinal alterations in patients with central serous chorioretinopathy[J]. Br J Ophthalmol, 2020, 104(10): 1453-1457. DOI: 10.1136/bjophthalmol-2019-315482.
- 51. Lim JS, Moon C, Lee J. Subretinal fluid disturbs the retinal venous blood flow in central serous chorioretinopathy[J]. Sci Rep, 2022, 12(1): 4903. DOI: 10.1038/s41598-022-08865-y.
- 52. Dursun ME, Erdem S, Karahan M, et al. Evaluation of parafoveal vascular density using optical coherence tomography angiography in patients with central serous chorioretinopathy[J]. Lasers Med Sci, 2022, 37(2): 1147-1154. DOI: 10.1007/s10103-021-03366-2.
- 53. Podkowinski D, Foessl B, de Sisternes L, et al. Early alterations in retinal microvasculature on swept-source optical coherence tomography angiography in acute central serous chorioretinopathy[J]. Sci Rep, 2021, 11(1): 3129. DOI: 10.1038/s41598-021-82650-1.
- 54. Mao J, Lin J, Zhu L, et al. Quantitative assessment of retinal capillary vessel density and foveal avascular zone area in central serous chorioretinopathy using OCTA[J]. Ophthalmologica, 2020, 243(5): 370-378. DOI: 10.1159/000504053.
- 55. Han KJ, Kim HJ, Woo JM, et al. Comparison of retinal layer thickness and capillary vessel density in the patients with spontaneously resolved acute central serous chorioretinopathy[J]. J Clin Med, 2020, 10(1): 45. DOI: 10.3390/jcm10010045.
- 56. Kim AY, Chu Z, Shahidzadeh A, et al. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT362-370. DOI: 10.1167/iovs.15-18904.
- 57. Gawęcki M, Jaszczuk-Maciejewska A, Jurska-Jaśko A, et al. Impairment of visual acuity and retinal morphology following resolved chronic central serous chorioretinopathy[J]. BMC Ophthalmol, 2019, 19(1): 160. DOI: 10.1186/s12886-019-1171-5.
- 58. Liu J, Chen C, Li L, et al. Assessment of choriocapillary blood flow changes in response to half-dose photodynamic therapy in chronic central serous chorioretinopathy using optical coherence tomography angiography[J]. BMC Ophthalmol, 2020, 20(1): 402. DOI: 10.1186/s12886-020-01674-9.
- 59. Fernández-Vigo JI, Moreno-Morillo FJ, Ortega-Hortas M, et al. Early changes in choriocapillaris flow voids as an efficacy biomarker of photodynamic therapy in central serous chorioretinopathy[J/OL]. Photodiagnosis Photodyn Ther, 2022, 38: 102862[2021-04-11]. https://www.sciencedirect.com/science/article/abs/pii/S1572100022001508. DOI: 10.1016/j.pdpdt.2022.102862.
- 60. Alovisi C, Piccolino FC, Nassisi M, et al. Choroidal structure after half-dose photodynamic therapy in chronic central serous chorioretinopathy[J]. J Clin Med, 2020, 9(9): 2734. DOI: 10.3390/jcm9092734.
- 61. Cennamo G, Montorio D, Comune C, et al. Study of vessel density by optical coherence tomography angiography in patients with central serous chorioretinopathy after low-fluence photodynamic therapy[J/OL]. Photodiagnosis Photodyn Ther, 2020, 30: 101742[2020-03-18]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(20)30095-8. DOI: 10.1016/j.pdpdt.2020.101742.
- 62. Nassisi M, Lavia C, Alovisi C, et al. Short-term choriocapillaris changes in patients with central serous chorioretinopathy after half-dose photodynamic therapy[J]. Int J Mol Sci, 2017, 18(11): 2468. DOI: 10.3390/ijms18112468.
- 63. Demirel S, Özcan G, Yanık Ö, et al. Vascular and structural alterations of the choroid evaluated by optical coherence tomography angiography and optical coherence tomography after half-fluence photodynamic therapy in chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(5): 905-912. DOI: 10.1007/s00417-018-04226-6.
- 64. Fujita K, Kawamura A, Yuzawa M. Choriocapillaris changes imaged by oct angiography after half-dose photodynamic therapy for chronic central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 302-310. DOI: 10.3928/23258160-20170329-04.
- 65. Demircan A, Yesilkaya C, Alkin Z. Early choriocapillaris changes after half-fluence photodynamic therapy in chronic central serous chorioretinopathy evaluated by optical coherence tomography angiography: preliminary results[J]. Photodiagnosis Photodyn Ther, 2018, 21: 375-378. DOI: 10.1016/j.pdpdt.2018.01.015.
- 66. Chan SY, Pan CT, Wang Q, et al. Optical coherent tomographic angiographic pattern of the deep choroidal layer and choriocapillaris after photodynamic therapy for central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1365-1372. DOI: 10.1007/s00417-019-04318-x.
- 67. Entezari M, Ansari I, Ramezani A, et al. Superficial retinal microvasculature and choriocapillaris alterations after photodynamic therapy in chronic central serous chorioretinopathy[J/OL]. J Ophthalmol, 2022, 2022: 4024603[2022-07-31]. https://www.hindawi.com/journals/joph/2022/4024603/. DOI: 10.1155/2022/4024603.
- 68. Le HM, Mrejen S, Sibilia L, et al. Optical coherence tomography angiography quantification of choriocapillaris blood-flow after half-fluence photodynamic therapy for chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(8): 2483-2490. DOI: 10.1007/s00417-022-05637-2.
- 69. Xu F, Lai K, Zhou L, et al. Quantitative evaluation of damage to retinal capillaries caused by half-dose and half-time photodynamic therapy with optical coherent tomographic angiography[J/OL]. Photodiagnosis Photodyn Ther, 2021, 36: 102477[2021-08-08]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(21)00301-X. DOI: 10.1016/j.pdpdt.2021.102477.
- 70. Hu YC, Chen YL, Chen YC, et al. 3-year follow-up of half-dose verteporfin photodynamic therapy for central serous chorioretinopathy with OCT-angiography detected choroidal neovascularization[J]. Sci Rep, 2021, 11(1): 13286. DOI: 10.1038/s41598-021-92693-z.
- 71. Guo J, Tang W, Xu S, et al. OCTA evaluation of treatment-naïve flat irregular PED (FIPED)-associated CNV in chronic central serous chorioretinopathy before and after half-dose PDT[J]. Eye (Lond), 2021, 35(10): 2871-2878. DOI: 10.1038/s41433-020-01345-5.
- 72. Müller B, Tatsios J, Klonner J, et al. Navigated laser photocoagulation in patients with non-resolving and chronic central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(9): 1581-1588. DOI: 10.1007/s00417-018-4031-8.
- 73. Prasuhn M, Miura Y, Tura A, et al. Influence of retinal microsecond pulse laser treatment in central serous chorioretinopathy: a short-term optical coherence tomography angiography study[J]. J Clin Med, 2021, 10(11): 2418. DOI: 10.3390/jcm10112418.
- 74. Ho M, Lai FHP, Ng DSC, et al. Analysis of choriocapillaris perfusion and choroidal layer changes in patients with chronic central serous chorioretinopathy randomised to micropulse laser or photodynamic therapy[J]. Br J Ophthalmol, 2021, 105(4): 555-560. DOI: 10.1136/bjophthalmol-2020-316076.
- 75. Sacconi R, Tomasso L, Corbelli E, et al. Early response to the treatment of choroidal neovascularization complicating central serous chorioretinopathy: a OCT-angiography study[J]. Eye (Lond), 2019, 33(11): 1809-1817. DOI: 10.1038/s41433-019-0511-2.
- 76. Cennamo G, Comune C, Mirra F, et al. Choriocapillary vascular density in central serous chorioretinopathy complicated by choroidal neovascularization[J/OL]. Photodiagnosis Photodyn Ther, 2020, 29: 101604[2019-11-017]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(19)30548-4. DOI: 10.1016/j.pdpdt.2019.101604.
- 77. Loo RH, Scott IU, Flynn HW Jr, et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy[J]. Retina, 2002, 22(1): 19-24. DOI: 10.1097/00006982-200202000-00004.
- 78. Schwartz R, Habot-Wilner Z, Martinez MR, et al. Eplerenone for chronic central serous chorioretinopathy-a randomized controlled prospective study[J]. Acta Ophthalmol, 2017, 95(7): 610-618. DOI: 10.1111/aos.13491.
- 79. Rahimy E, Pitcher JD 3rd, Hsu J, et al. A randomized double-blind placebo-control pilot study of eplerenone for the treatment of central serous chorioretinopathy (ecselsior)[J]. Retina, 2018, 38(5): 962-969. DOI: 10.1097/IAE.0000000000001649.
- 80. Zucchiatti I, Sacconi R, Parravano MC, et al. Eplerenone versus observation in the treatment of acute central serous chorioretinopathy: a retrospective controlled study[J]. Ophthalmol Ther, 2018, 7(1): 109-118. DOI: 10.1007/s40123-018-0121-2.
- 81. Lotery A, Sivaprasad S, O'Connell A, et al. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2020, 395(10220): 294-303. DOI: 10.1016/S0140-6736(19)32981-2.
- 82. van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. DOI: 10.1016/j.ophtha.2018.04.021.
- 83. Rabiolo A, Zucchiatti I, Marchese A, et al. Multimodal retinal imaging in central serous chorioretinopathy treated with oral eplerenone or photodynamic therapy[J]. Eye (Lond), 2018, 32(1): 55-66. DOI: 10.1038/eye.2017.290.
- 84. Hu J, Qu J, Li M, et al. Optical coherence tomography angiography-guided photodynamic therapy for acute central serous chorioretinopathy[J]. Retina, 2021, 41(1): 189-198. DOI: 10.1097/IAE.0000000000002795.