1. |
杨明, 何笑英, 韩伟. 自身免疫性葡萄膜炎中免疫细胞的功能及变化的研究进展[J]. 细胞与分子免疫学杂志, 2023, 39(1): 81-87.Yang M, He XY, Han W. The function and changes of immune cells in autoimmune uveitis[J]. Chinese Journal of Cellular and Molecular Immunology, 2023, 39(1): 81-87.
|
2. |
李江伟, 张艳雪, 彭静娴, 等. 彭清华分期辨治自身免疫性葡萄膜炎经验[J]. 中医杂志, 2023, 64(23): 2393-2396, 2406. DOI: 10.13288/j.11-2166/r.2023.23.004.Li JW, Zhang YX, Peng JX, et al. Peng Qinghua's experience in the staged treatment of autoimmune uveitis[J]. Journal of Traditional Chinese Medicine, 2023, 64(23): 2393-2396, 2406. DOI: 10.13288/j.11-2166/r.2023.23.004.
|
3. |
陈双兰, 刘青松, 胡双元, 等. 铁死亡及其在炎症性肠病中对肠上皮细胞作用机制的研究进展[J]. 中国药理学通报, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107.Chen SL, Liu QS, Hu SY, et al. Research progress of ferroptosis and its mechanism of action on intestinal epithelial cells in inflammatory bowel disease[J]. Chinese Pharmacological Bulletin, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107.
|
4. |
王晓璇, 王彦, 张铭连, 等. 铁死亡在视网膜缺血再灌注损伤中的作用及中药治疗的研究进展[J]. 中国中医眼科杂志, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015.Wang XX, Wang Y, Zhang ML, et al. The role of ferroptosis in retinal ischemia-reperfusion injury and research progress in traditional Chinese medicine treatment[J]. Chinese Journal of Chinese Ophthalmology, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015.
|
5. |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
|
6. |
徐丽程, 田霖丽, 刘鸣. 铁死亡的代谢关联机制及其在肿瘤免疫治疗中的作用研究进展[J]. 中国肿瘤临床, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967.Xu LC, Tian LL, Liu M. Progress in the study of metabolism-associated mechanism of iron death and its role in tumour immunotherapy[J]. China Cancer Clin, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967.
|
7. |
Böhm EW, Buonfiglio F, Voigt AM, et al. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases[J/OL]. Redox Biol, 2023, 68: 102967[2023-11-18]. https://pubmed.ncbi.nlm.nih.gov/38006824/. DOI: 10.1016/j.redox.2023.102967.
|
8. |
Rademaker G, Boumahd Y, Peiffer R, et al. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells[J]. Redox Biol, 2022, 53: 102324[2022-05-04]. https://pubmed.ncbi.nlm.nih.gov/35533575/. DOI: 10.1016/j.redox.2022.102324.
|
9. |
Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J/OL]. Oxid Med Cell Longev, 2022, 2022: 9678625[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/35378823/. DOI: 10.1155/2022/9678625 .
|
10. |
Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003.
|
11. |
Fan J, Jiang T, He D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases[J/OL]. Front Immunol, 2023, 14: 1120519[2023-03-30]. https://pubmed.ncbi.nlm.nih.gov/37063835/. DOI: 10.3389/fimmu.2023.1120519.
|
12. |
Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "Iron Maiden" cell death[J/OL]. Cells, 2020, 9(6): 1505[2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/32575749/. DOI: 10.3390/cells9061505.
|
13. |
李敏, 莫诗雯, 李伊, 等. 血-视网膜屏障损伤的机制及治疗对策[J]. 国际眼科杂志, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13.Li M, Mo SW, Li Y, et al. Mechanisms and therapeutic countermeasures of blood-retinal barrier damage[J]. Int Eye Sci, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13.
|
14. |
Yemanyi F, Bora K, Blomfield AK, et al. Wnt signaling in inner blood-retinal barrier maintenance[J/OL]. Int J Mol Sci, 2021, 22(21): 11877[2021-11-02]. https://pubmed.ncbi.nlm.nih.gov/34769308/. DOI: 10.3390/ijms222111877.
|
15. |
Chen YH, Eskandarpour M, Zhang X, et al. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis[J]. J Neuroinflammation, 2021, 18(1): 49. DOI: 10.1186/s12974-021-02080-8.
|
16. |
Weigelt CM, Zippel N, Fuchs H, et al. Characterization and validation of in vitro and in vivo models to investigate TNF-α-induced inflammation in retinal diseases[J]. Transl Vis Sci Technol, 2022, 11(5): 18. DOI: 10.1167/tvst.11.5.18.
|
17. |
Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis[J/OL]. Sci Adv, 2023, 9(42): 4655[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37851814/. DOI: 10.1126/sciadv.adh4655.
|
18. |
Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship[J/OL]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535[2019-08-22]. https://pubmed.ncbi.nlm.nih.gov/31446062/. DOI: 10.1016/j.bbamcr.2019.118535.
|
19. |
Yang S, Lian G. ROS and diseases: role in metabolism and energy supply[J]. Mol Cell Biochem, 2020, 467(1-2): 1-12. DOI: 10.1007/s11010-019-03667-9.
|
20. |
Tisi A, Feligioni M, Passacantando M, et al. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration[J]. Cells, 2021, 10(1): 64. DOI: 10.3390/cells10010064.
|
21. |
Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 108. DOI: 10.1038/s41392-020-00216-5.
|
22. |
Iyer S, Lagrew MK, et al. The vitreous ecosystem in diabetic retinopathy: insight into the patho-mechanisms of disease[J/OL]. Int J Mol Sci, 2021, 22(13): 7142[2021-07-01]. https://pubmed.ncbi.nlm.nih.gov/34281192/. DOI: 10.3390/ijms22137142.
|
23. |
韩莎莎, 李跃峰, 徐新萌. 基于NF-κB信号通路探究miR-3197在糖尿病视网膜病变中的作用机制[J]. 眼科新进展, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037.Han SS, Li YF, Xu XM. Probing the mechanism of miR-3197 in diabetic retinopathy based on NF-κB signalling pathway[J]. Rec Adv Ophthalmol, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037.
|
24. |
Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205. DOI: 10.1038/s41419-023-05716-0.
|
25. |
Oh BM, Lee SJ, Park GL, et al. Erastin inhibits septic shock and inflammatory gene expression via suppression of the NF-κB pathway[J/OL]. J Clin Med, 2019, 8(12): 2210[2019-11-14]. https://pubmed.ncbi.nlm.nih.gov/31847346/. DOI: 10.3390/jcm8122210.
|
26. |
高明, 徐丽丽, 王利存, 等. 基于TLR4/NF-κB信号通路探讨银杏二萜内酯对糖尿病大鼠视网膜病变的影响[J]. 天津中医药, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20.Gao M, Xu LL, Wang LC, et al. Effects of ginkgo diterpene lactone on retinopathy in diabetic rats based on TLR4/NF-κB signalling pathway[J]. Tianjin Traditional Chinese Medicine, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20.
|
27. |
梁岑怡, 滕金豪, 辛宛铃, 等. 基于MAPK信号通路的中药治疗急性胰腺炎作用机制研究进展[J]. 环球中医药, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033.Liang CY, Teng JH, Xin WL, et al. Progress on the mechanism of action of traditional Chinese medicine based on MAPK signalling pathway in the treatment of acute pancreatitis[J]. Global Chinese Medicine, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033.
|
28. |
Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(9): 1398-1409. DOI: 10.1016/j.bbagen.2019.06.010.
|
29. |
Zeng S, Zhang T, Chen Y, et al. Inhibiting the activation of MAPK (ERK1/2) in stressed Müller cells prevents photoreceptor degeneration[J]. Theranostics, 2022, 12(15): 6705-6722. DOI: 10.7150/thno.71038.
|
30. |
叶露, 李秀芹, 王建青. 肝脏疾病中内质网应激与铁死亡的关系[J]. 临床肝胆病杂志, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.Ye L, Li XQ, Wang JQ. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. J Clin Hepatol, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.
|
31. |
He S, Yaung J, Kim YH, et al. Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(5): 677-683. DOI: 10.1007/s00417-008-0770-2.
|
32. |
Lee YS, Lee DH, Choudry HA, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Mol Cancer Res, 2018, 16(7): 1073-1076. DOI: 10.1158/1541-7786.MCR-18-0055.
|
33. |
Wang N, Wei L, Liu D, et al. Identification and validation of autophagy-related genes in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 867600[2022-04-29]. https://pubmed.ncbi.nlm.nih.gov/35574010/. DOI: 10.3389/fendo.2022.867600.
|
34. |
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335. DOI: 10.1038/nature09782.
|
35. |
Santeford A, Wiley LA, Park S, et al. Impaired autophagy in macrophages promotes inflammatory eye disease[J]. Autophagy, 2016, 12(10): 1876-1885. DOI: 10.1080/15548627.2016.1207857.
|
36. |
Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J/OL]. Cell Death Dis, 2019, 10(11): 822[2019-10-28]. https://pubmed.ncbi.nlm.nih.gov/31659150/. DOI: 10.1038/s41419-019-2064-5.
|
37. |
Wang C, Zhou W, Su G, et al. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting treg cells and M2 macrophages[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1133[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35082168/. DOI: 10.1212/NXI.0000000000001133.
|
38. |
Ma J, Zhang H, Chen Y, et al. The role of macrophage iron overload and ferroptosis in atherosclerosis[J/OL]. Biomolecules, 2022, 12(11): 1702[2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36421722/. DOI: 10.3390/biom12111702.
|
39. |
Yang Y, Wang Y, Guo L, et al. Interaction between macrophages and ferroptosis[J]. Cell Death Dis, 2022, 13(4): 355. DOI: 10.1038/s41419-022-04775-z.
|
40. |
Yang X, Yu XW, Zhang DD, et al. Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases[J]. Chin Med J (Engl), 2020, 133(21): 2586-2594. DOI: 10.1097/CM9.0000000000001015.
|
41. |
Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases[J]. Theranostics, 2017, 7(6): 1543-1588. DOI: 10.7150/thno.15625.
|
42. |
刘自强, 接传红, 王建伟, 等. 糖尿病视网膜病变免疫机制的研究进展[J]. 眼科新进展, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031.Liu ZQ, Jie CH, Wang JW, et al. Progress in the study of immune mechanisms in diabetic retinopathy[J]. Rec Adv Ophthalmol, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031.
|
43. |
Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675. DOI: 10.1038/s41418-019-0380-z.
|
44. |
Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J/OL]. Elife, 2014, 3: e02523[2014-05-20]. https://pubmed.ncbi.nlm.nih.gov/24844246/. DOI: 10.7554/eLife.02523.
|
45. |
Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J]. Cell Death Dis, 2018, 9(7): 753. DOI: 10.1038/s41419-018-0794-4.
|
46. |
Martis RM, Knight LJ, Donaldson PJ, et al. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues[J/OL]. Oxid Med Cell Longev, 2020, 2020: 4594606[2020-06-18]. https://pubmed.ncbi.nlm.nih.gov/32655769/. DOI: 10.1155/2020/4594606.
|
47. |
Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[J]. Cell Death Differ, 2023, 30(1): 69-81. DOI: 10.1038/s41418-022-01046-4.
|
48. |
Wei TT, Zhang MY, Zheng XH, et al. Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration[J]. FEBS J, 2022, 289(7): 1968-1983. DOI: 10.1111/febs.16272.
|
49. |
Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.
|