1. |
GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2023, 402(10397): 203-234. DOI: 10.1016/S0140-6736(23)01301-6.
|
2. |
Teo Z L, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
|
3. |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2023.110945.
|
4. |
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)-基于循证医学修订[J]. 中华眼底病杂志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Disease Group of Ophthalmological Society of Chinese Medical Association, Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)-revised based on evidence-based medicine[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
|
5. |
Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118. DOI: 10.1038/s41580-020-00315-9.
|
6. |
Geng M, Liu W, Li J, et al. LncRNA as a regulator in the development of diabetic complications[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1324393[2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/38390204/. DOI: 10.3389/fendo.2024.1324393.
|
7. |
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4): 195-206. DOI: 10.1038/s41574-020-00451-4.
|
8. |
Schmidt LH, Spieker T, Koschmieder S, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth[J]. J Thorac Oncol, 2011, 6(12): 1984-1992. DOI: 10.1097/JTO.0b013e3182307eac.
|
9. |
Su Y, Wu H, Pavlosky A, et al. Regulatory non-coding RNA: new instruments in the orchestration of cell death[J/OL]. Cell Death Dis, 2016, 7(8): e2333[2016-08-11]. https://pubmed.ncbi.nlm.nih.gov/27512954/. DOI: 10.1038/cddis.2016.210.
|
10. |
Yan B, Tao ZF, Li XM, et al. Aberrant expression of long noncoding RNAs in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 941-951. DOI: 10.1167/iovs.13-13221.
|
11. |
Biswas S, Thomas AA, Chen S, et al. MALAT1: An epigenetic regulator of Inflammation in diabetic retinopathy[J/OL]. Sci Rep, 2018, 8(1): 6526[2018-04-25]. https://pubmed.ncbi.nlm.nih.gov/29695738/. DOI: 10.1038/s41598-018-24907-w.
|
12. |
Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus[J/OL]. Cell Death Dis, 2014, 5(10): e1506[2014-10-30]. https://pubmed.ncbi.nlm.nih.gov/25356875/. DOI: 10.1038/cddis.2014.466.
|
13. |
Zhang YL, Hu HY, You ZP, et al. Targeting long non-coding RNA MALAT1 alleviates retinal neurodegeneration in diabetic mice[J]. Int J Ophthalmol, 2020, 13(2): 213-219. DOI: 10.18240/ijo.2020.02.03.
|
14. |
Kovoor E, Chauhan S K, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy[J]. Surv Ophthalmol, 2022, 67(6): 1563-1573. DOI: 10.1016/j.survophthal.2022.07.008.
|
15. |
Haydinger CD, Oliver GF, Ashander LM, et al. Oxidative stress and its regulation in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2023, 12(8): 1649[2023-08-21]. https://pubmed.ncbi.nlm.nih.gov/37627644/. DOI: 10.3390/antiox12081649.
|
16. |
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J/OL]. Redox Biol, 2020, 37: 101799[2020-11-13]. https://pubmed.ncbi.nlm.nih.gov/33248932/. DOI: 10.1016/j.redox.2020.101799.
|
17. |
Tian Y, Cheng W, Wang H, et al. Ascorbic acid protects retinal pigment epithelial cells from high glucose by inhibiting the NF-κB signal pathway through MALAT1/IGF2BP3 axis[J/OL]. Diabet Med, 2023, 40(5): e15050[2023-01-20]. https://pubmed.ncbi.nlm.nih.gov/36661363/. DOI: 10.1111/dme.15050.
|
18. |
Jiang X, Liu Y, Wang Y, et al. Long non-coding RNA MALAT1 is involved in retinal pigment epithelial cell damage caused by high glucose treatment[J]. Mol Med Rep, 2022, 25(5): 177. DOI: 10.3892/mmr.2022.12693.
|
19. |
Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells[J/OL]. Biomed Pharmacother, 2020, 124: 109699[2020-01-25]. https://pubmed.ncbi.nlm.nih.gov/31986419/. DOI: 10.1016/j.biopha.2019.109699.
|
20. |
Radhakrishnan R, Kowluru RA. Long noncoding RNA MALAT1 and regulation of the antioxidant defense system in diabetic retinopathy[J]. Diabetes, 2021, 70(1): 227-239. DOI: 10.2337/db20-0375.
|
21. |
Ling S, Birnbaum Y, Nanhwan MK, et al. MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina[J]. Cell Signal, 2013, 25(12): 2840-2847. DOI: 10.1016/j.cellsig.2013.08.039.
|
22. |
Zhao R, Qian L, Jiang L. miRNA-dependent cross-talk between VEGF and Ang-2 in hypoxia-induced microvascular dysfunction[J]. Biochem Biophys Res Commun, 2014, 452(3): 428-435. DOI: 10.1016/j.bbrc.2014.08.096.
|
23. |
Moore JB 4th, Uchida S. Functional characterization of long noncoding RNAs[J]. Curr Opin Cardiol, 2020, 35(3): 199-206. DOI: 10.1097/HCO.0000000000000725.
|
24. |
Zhao W, Liu Y, Li C, et al. Mechanisms of MALAT1 regulating proliferative diabetic retinopathy via targeting miR-126-5p[J]. Am J Transl Res, 2023, 15(5): 3279-3289.
|
25. |
Chen Z, Yang J, Gao Y, et al. LncRNA MALAT1 aggravates the retinal angiogenesis via miR-320a/HIF-1α axis in diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 218: 108984[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35202706/. DOI: 10.1016/j.exer.2022.108984.
|
26. |
Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p[J]. Arch Physiol Biochem, 2024, 130(2): 119-127. DOI: 10.1080/13813455.2021.1985144.
|
27. |
Tan A, Li T, Ruan L, et al. Knockdown of malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis[J/OL]. Exp Eye Res, 2021, 207: 1085859[2021-04-20]. https://pubmed.ncbi.nlm.nih.gov/33887222/. DOI: 10.1016/j.exer.2021.108585.
|
28. |
Han N, Tian W, Yu N, et al. YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1-mediated miR-200b-3p in high glucose-induced diabetic retinopathy[J]. J Cell Physiol, 2020, 235(2): 1309-1320. DOI: 10.1002/jcp.29047.
|
29. |
Liu P, Jia SB, Shi JM, et al. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis[J/OL]. Biosci Rep, 2019, 39(5): BSR20181469[2019-05-15]. https://pubmed.ncbi.nlm.nih.gov/30988072/. DOI: 10.1042/BSR20181469.
|
30. |
Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications[J]. Noncoding RNA, 2020, 6(2): 22. DOI: 10.3390/ncrna6020022.
|
31. |
杨大伟, 黄庆, 周连吉, 等. LncRNA MALAT1在2型糖尿病患者中的表达及临床意义[J]. 中国老年学杂志, 2022, 42(1): 15-18. DOI: 10.3969/j.issn.1005-9202.2022.01.004.Yang DW, Huang Q, Zhou LJ, et al. Expression and clinical significance of LncRNA MALAT1 in patients with type 2 diabetes[J]. Chinese Journal of Gerontology, 2022, 42(1): 15-18. DOI: 10.3969/j.issn.1005-9202.2022.01.004.
|
32. |
Li J, Wang C, Shao C, et al. Expression and diagnostic value of lncRNA MALAT1 and NLRP3 in lower limb atherosclerosis in diabetes[J]. BMC Endocr Disord, 2024, 24(1): 28. DOI: 10.1186/s12902-024-01557-w.
|
33. |
Rajabinejad M, Asadi G, Ranjbar S, et al. The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy[J]. Immunol Lett, 2022, 245: 69-78. DOI: 10.1016/j.imlet.2022.03.004.
|
34. |
Zhou LJ, Yang DW, Ou LN, et al. Circulating expression level of lncRNA Malat1 in diabetic kidney disease patients and its clinical significance[J/OL]. J Diabetes Res, 2020, 2020: 4729019[2020-08-01]. https://pubmed.ncbi.nlm.nih.gov/32832561/. DOI: 10.1155/2020/4729019.
|
35. |
Su X, Huang H, Lai J, et al. Long noncoding RNAs as potential diagnostic biomarkers for diabetes mellitus and complications: a systematic review and meta-analysis[J/OL]. J Diabetes, 2023, 16(2): e13510[2023-12-23]. https://pubmed.ncbi.nlm.nih.gov/38140829/. DOI: 10.1111/1753-0407.13510.
|
36. |
Shaker OG, Abdelaleem OO, Mahmoud RH, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy[J]. IUBMB life, 2019, 71(3): 310-320. DOI: 10.1002/iub.1970.
|
37. |
邱煜焱, 杨旭, 苟文军, 等. 2型糖尿病患者血清lncRNA MALAT1表达水平与视网膜病变的关系[J]. 眼科新进展, 2022, 42(12): 971-974. DOI: 10.13389/j.cnki.rao.2022.0199.Qiu YY, Yang X, Gou WJ, et al. Relationship between the expression level of long non-coding ribonucleic acid metastasis associated lung adenocarcinoma transcript 1 in serum and retinopathy in patients with type 2 diabetes mellitus[J]. Rec Adv Ophthalmol, 2022, 42(12): 971-974. DOI: 10.13389/j.cnki.rao.2022.0199.
|
38. |
Biswas S, Coyle A, Chen S, et al. Expressions of serum incRNAs in diabetic retinopathy-a potential diagnostic tool[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 851967[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35464068/. DOI: 10.3389/fendo.2022.851967.
|
39. |
Toraih EA, Abdelghany AA, Abd El Fadeal NM, et al. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(9): 1897-1913. DOI: 10.1007/s00417-019-04409-9.
|
40. |
Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): S3-15. DOI: 10.1111/dom.14007.
|
41. |
Di S, An X, Pang B, et al. Yiqi Tongluo Fang could preventive and delayed development and formation of diabetic retinopathy through antioxidant and anti-inflammatory effects[J/OL]. Biomed Pharmacother, 2022, 148: 112254[2022-02-17]. https://pubmed.ncbi.nlm.nih.gov/35183405/. DOI: 10.1016/j.biopha.2021.112254.
|
42. |
苟文军, 李恒, 游慧, 等. 康柏西普对糖尿病性黄斑水肿患者血清中lncRNA MALAT1水平及黄斑中央区厚度的影响[J]. 国际眼科杂志, 2023, 23(1): 10-16. DOI: 10.3980/j.issn.1672-5123.2023.1.03.Gou WJ, Li H, You H, et al. Effect of Conbercept on serum lncRNA MALAT1 levels and central macular thickness in patients with diabetic macular edema[J]. Int Eye Sci, 2023, 23(1): 10-16. DOI: 10.3980/j.issn.1672-5123.2023.1.03.
|
43. |
Davodabadi F, Farasati Far B, Sargazi S, et al. Nanomaterials-based targeting of long non-coding RNAs in cancer: a cutting-edge review of current trends[J/OL]. ChemMedChem, 2024, 19(8): e202300528[2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/38267373/. DOI: 10.1002/cmdc.202300528.
|
44. |
Shyu KG, Wang BW, Fang WJ, et al. Exosomal MALAT1 derived from high glucose-treated macrophages up-regulates resistin expression via miR-150-5p downregulation[J/OL]. Int J Mol Sci, 2022, 23(3): 1095[2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/35163020/. DOI: 10.3390/ijms23031095.
|
45. |
Shyu KG, Wang BW, Pan CM, et al. Exosomal MALAT1 from macrophages treated with high levels of glucose upregulates LC3B expression via miR-204-5p downregulation[J]. J Chin Med Assoc, 2024, 87(6): 581-589. DOI: 10.1097/JCMA.0000000000001098.
|
46. |
Amodio N, Raimondi L, Juli G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches[J]. J Hematol Oncol, 2018, 11(1): 63. DOI: 10.1186/s13045-018-0606-4.
|