- 1. College of Clinical Medicine, Jining Medical University, Jining 272067, China;
- 2. Institute of Precision Medicine, Jining Medical University, Jining 272067, China;
Age-related macular degeneration (AMD) is an age-related neurodegenerative eye disease characterized by degeneration of retinal pigment epithelium (RPE) cells, photoreceptor cells, and progressive death. Stem cell therapy is a new treatment for AMD in recent years, and it is a research hotspot. Although there are risks such as increased incidence of cancer and immune rejection in stem cell therapy, retinal cells such as RPE cells are derived from stem cells, and neurotrophic factors and extracellular vesicles produced by stem cells can significantly repair damaged photoreceptors and retinal cells. The cryopreservation method of embryonic stem cell-derived RPE cells and the vigorous development of delivery technologies such as plasmids, adeno-associated viruses and Sendai virus have also laid a solid foundation for stem cell therapy of AMD. Stem cell neuroprotective therapy is being used as a new method to prevent retinal damage and photoreceptor degeneration, which will provide new ideas for the prevention and treatment of AMD in the future.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Sarkar A, Dyawanapelly S. Nanodiagnostics and nanotherapeutics for age-related macular degeneration[J]. J Control Release, 2021, 329: 1262-1282. DOI: 10.1016/j.jconrel.2020.10.054. |
2. | Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/s2214-109x(13)70145-1. |
3. | Temple S. Advancing cell therapy for neurodegenerative diseases[J]. Cell Stem Cell, 2023, 30(5): 512-529. DOI: 10.1016/j.stem.2023.03.017. |
4. | Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U. Age-related macular degeneration: a review[J]. JAMA, 2024, 331(2): 147-157. DOI: 10.1001/jama.2023.26074. |
5. | Schultz NM, Bhardwaj S, Barclay C, et al. Global burden of dry age-related macular degeneration: a targeted literature review[J]. Clin Ther, 2021, 43(10): 1792-1818. DOI: 10.1016/j.clinthera.2021.08.011. |
6. | Voelker R. What is age-related macular degeneration?[J]. JAMA, 2024, 331(24): 2142. DOI: 10.1001/jama.2024.4281. |
7. | Niu Y, Ji J, Yao K, et al. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges[J]. Adv Ophthalmol Pract Res, 2024, 4(2): 52-64. DOI: 10.1016/j.aopr.2024.02.001. |
8. | Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[J]. Prog Retin Eye Res, 2019, 69: 38-56. DOI: 10.1016/j.preteyeres.2018.11.003. |
9. | Rohowetz LJ, Koulen P. Stem cell-derived retinal pigment epithelium cell therapy: past and future directions[J/OL]. Front Cell Dev Biol, 2023, 11: 1098406[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37065847/. DOI: 10.3389/fcell.2023.1098406. |
10. | Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: balancing safety and potential[J/OL]. Prog Retin Eye Res, 2020, 75: 100779[2019-09-05]. https://pubmed.ncbi.nlm.nih.gov/31494256/. DOI: 10.1016/j.preteyeres.2019.100779. |
11. | Girgis S, Lee LR. Treatment of dry age-related macular degeneration: a review[J]. Clin Exp Ophthalmol, 2023, 51(8): 835-852. DOI: 10.1111/ceo.14294. |
12. | Sahle FF, Kim S, Niloy KK, et al. Nanotechnology in regenerative ophthalmology[J]. Adv Drug Deliv Rev, 2019, 148: 290-307. DOI: 10.1016/j.addr.2019.10.006. |
13. | Sharma A, Jaganathan BG. Stem cell therapy for retinal degeneration: the evidence to date[J]. Biologics, 2021, 15: 299-306. DOI: 10.2147/btt.S290331. |
14. | Nair DSR, Thomas BB. Stem cell-based treatment strategies for degenerative diseases of the retina[J]. Curr Stem Cell Res Ther, 2022, 17(3): 214-225. DOI: 10.2174/1574888x16666210804112104. |
15. | Mead B, Berry M, Logan A, et al. Stem cell treatment of degenerative eye disease[J]. Stem Cell Res, 2015, 14(3): 243-257. DOI: 10.1016/j.scr.2015.02.003. |
16. | Li T, Lewallen M, Chen S, et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells[J]. Cell Res, 2013, 23(6): 788-802. DOI: 10.1038/cr.2013.48. |
17. | Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032. |
18. | Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/s0140-6736(14)61376-3. |
19. | Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872. DOI: 10.1016/j.stemcr.2015.04.005. |
20. | Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration[J]. Cell Discov, 2018, 4: 50. DOI: 10.1038/s41421-018-0053-y. |
21. | Da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration[J]. Nat Biotechnol, 2018, 36(4): 328-337. DOI: 10.1038/nbt.4114. |
22. | Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings[J]. J Exp Clin Cancer Res, 2011, 30(1): 9. DOI: 10.1186/1756-9966-30-9. |
23. | 王珊珊. 间充质干细胞治疗年龄相关性黄斑变性研究现状及其局限性[J]. 中华实验眼科杂志, 2019, 37(11): 926-931. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.014.Wang SS. The research status and the limitations of mesenchymal stem cell-based therapies in age-related macular degeneration[J]. Chin J Exp Ophthalmol, 2019, 37(11): 926-931. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.014. |
24. | Prakash N, Kim J, Jeon J, et al. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSC) from pluripotent stem cells (PSCs)[J]. Biomater Res, 2023, 27(1): 31. DOI: 10.1186/s40824-023-00371-0. |
25. | Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell replacement therapy for retinal and optic nerve diseases: cell sources, clinical trials and challenges[J]. Pharmaceutics, 2021, 13(6): 865. DOI: 10.3390/pharmaceutics13060865. |
26. | Usategui-Martín R, Puertas-Neyra K, García-Gutiérrez MT, et al. Human mesenchymal stem cell secretome exhibits a neuroprotective effect over in vitro retinal photoreceptor degeneration[J]. Mol Ther Methods Clin Dev, 2020, 17: 1155-1166. DOI: 10.1016/j.omtm.2020.05.003. |
27. | Tang Y, Kang Y, Zhang X, et al. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration[J]. J Control Release, 2023, 357: 356-370. DOI: 10.1016/j.jconrel.2023.04.003. |
28. | Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160. DOI: 10.1016/j.biomaterials.2019.01.016. |
29. | Zhou H, Liu Y, Zhou T, et al. IL-23 priming enhances the neuroprotective effects of MSC-derived exosomes in treating retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2024, 65(10): 8. DOI: 10.1167/iovs.65.10.8. |
30. | Yu B, Shao H, Su C, et al. Exosomes derived from MSC ameliorate retinal laser injury partially by inhibition of MCP-1[J/OL]. Sci Rep, 2016, 6: 34562[2016-09-30]. https://pubmed.ncbi.nlm.nih.gov/27686625/. DOI: 10.1038/srep34562. |
31. | Dezfuly AR, Safaee A, Amirpour N, et al. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats[J/OL]. Life Sci, 2022, 300: 120570[2022-07-01]. https://pubmed.ncbi.nlm.nih.gov/35469914/. DOI: 10.1016/j.lfs.2022.120570. |
32. | Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2051-2059. DOI: 10.1167/iovs.09-4509. |
33. | Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration[J]. Expert Opin Biol Ther, 2017, 17(9): 1113-1126. DOI: 10.1080/14712598.2017.1346079. |
34. | Giacalone JC, Parkinson DH, Balikov DA, et al. AMD and stem cell-based therapies[J]. Int Ophthalmol Clin, 2024, 64(1): 21-33. DOI: 10.1097/iio.0000000000000510. |
35. | Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046. DOI: 10.1056/NEJMoa1608368. |
36. | Takagi S, Mandai M, Gocho K, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration[J]. Ophthalmol Retina, 2019, 3(10): 850-859. DOI: 10.1016/j.oret.2019.04.021. |
37. | Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation[J]. Stem Cells Dev, 2014, 23(12): 1285-1300. DOI: 10.1089/scd.2013.0620. |
38. | Zhang T, Qian C, Song M, et al. Application prospect of induced pluripotent stem cells in organoids and cell therapy[J/OL]. Int J Mol Sci, 2024, 25(5): 2680[2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/38473926/. DOI: 10.3390/ijms25052680. |
39. | Aoki H. Generation of iPSCs using sendai virus vectors[J]. Methods Mol Biol, 2024, 2794: 121-140. DOI: 10.1007/978-1-0716-3810-1_11. |
40. | Rodriguez-Polo I, Mißbach S, Petkov S, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation[J/OL]. Sci Rep, 2021, 11(1): 15439[2021-07-29]. https://pubmed.ncbi.nlm.nih.gov/34326359/. DOI: 10.1038/s41598-021-94419-7. |
41. | Hartley A, Burger L, Wincek CL, et al. A simple nonviral method to generate human induced pluripotent stem cells using SMAR DNA vectors[J]. Genes (Basel), 2024, 15(5): 575. DOI: 10.3390/genes15050575. |
42. | Yang Y, Liu B, Dong J, et al. Proteins reprogramming: present and future[J/OL]. Scientific World J, 2012, 2012: 453185[2012-11-22]. https://pubmed.ncbi.nlm.nih.gov/23226982/. DOI: 10.1100/2012/453185. |
43. | Lutfi Ismaeel G, Makki AlHassani OJ, R SA, et al. Genetically engineered neural stem cells (NSC) therapy for neurological diseases; state-of-the-art[J/OL]. Biotechnol Prog, 2023, 39(5): e3363[2023-05-23]. https://pubmed.ncbi.nlm.nih.gov/37221947/. DOI: 10.1002/btpr.3363. |
44. | Afarid M, Sanie-Jahromi F. Potential neuroprotective biomolecules in ophthalmology[J]. Int Ophthalmol, 2021, 41(3): 1103-1109. DOI: 10.1007/s10792-020-01634-8. |
45. | Rhee KD, Nusinowitz S, Chao K, et al. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells[J/OL]. Proc Natl Acad Sci USA, 2013, 110(47): E4520-4529[2013-11-19]. https://pubmed.ncbi.nlm.nih.gov/24191003/. DOI: 10.1073/pnas.1303604110. |
46. | Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, et al. Animal models of LED-induced phototoxicity. Short- and long-term in vivo and ex vivo retinal alterations[J/OL]. Life (Basel), 2021, 11(11): 1137[2021-10-26]. https://pubmed.ncbi.nlm.nih.gov/34833013/. DOI: 10.3390/life11111137. |
47. | Mattern L, Otten K, Miskey C, et al. Molecular and functional characterization of BDNF-overexpressing human retinal pigment epithelial cells established by sleeping beauty transposon-mediated gene transfer[J/OL]. Int J Mol Sci, 2022, 23(21): 12982[2022-10-26]. https://pubmed.ncbi.nlm.nih.gov/36361771/. DOI: 10.3390/ijms232112982. |
48. | Amadoro G, Latina V, Balzamino BO, et al. Nerve growth factor-based therapy in Alzheimer's disease and age-related macular degeneration[J/OL]. Front Neurosci, 2021, 15: 735928[2021-09-09]. https://pubmed.ncbi.nlm.nih.gov/34566573/. DOI: 10.3389/fnins.2021.735928. |
49. | Hill D, Compagnoni C, Cordeiro MF. Investigational neuroprotective compounds in clinical trials for retinal disease[J]. Expert Opin Investig Drugs, 2021, 30(5): 571-577. DOI: 10.1080/13543784.2021.1896701. |
50. | Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465. DOI: 10.2174/1570159x16666180412092859. |
51. | Tomczak W, Winkler-Lach W, Tomczyk-Socha M, et al. Advancements in ocular regenerative therapies[J]. Biology (Basel), 2023, 12(5): 737. DOI: 10.3390/biology12050737. |
52. | Liu H, Lu S, Chen M, et al. Towards stem/progenitor cell-based therapies for retinal degeneration[J]. Stem Cell Rev Rep, 2024, 20(6): 1459-1479. DOI: 10.1007/s12015-024-10740-4. |
53. | Karl MO, Hayes S, Nelson BR, et al. Stimulation of neural regeneration in the mouse retina[J]. Proc Natl Acad Sci USA, 2008, 105(49): 19508-19513. DOI: 10.1073/pnas.0807453105. |
54. | Langhe R, Chesneau A, Colozza G, et al. Müller glial cell reactivation in Xenopus models of retinal degeneration[J]. Glia, 2017, 65(8): 1333-1349. DOI: 10.1002/glia.23165. |
55. | Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects[J]. Prog Retin Eye Res, 2009, 28(6): 423-451. DOI: 10.1016/j.preteyeres.2009.07.001. |
56. | Eastlake K, Luis J, Limb GA. Potential of Müller glia for retina neuroprotection[J]. Curr Eye Res, 2020, 45(3): 339-348. DOI: 10.1080/02713683.2019.1648831. |
57. | Shen H, Ding C, Yuan S, et al. Vitamin C and valproic acid-induced fetal RPE stem-like cells recover retinal degeneration via regulating SOX2[J]. Mol Ther, 2020, 28(7): 1645-1657. DOI: 10.1016/j.ymthe.2020.04.008. |
58. | Pan T, Shen H, Yuan S, et al. Combined transplantation with human mesenchymal stem cells improves retinal rescue effect of human fetal RPE cells in retinal degeneration mouse model[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 9. DOI: 10.1167/iovs.61.8.9. |
59. | Liu Z, Parikh BH, Tan QSW, et al. Surgical transplantation of human RPE stem cell derived RPE monolayers into non-human primates with immunosuppression[J]. Stem Cell Reports, 2021, 16(2): 237-251. DOI: 10.1016/j.stemcr.2020.12.007. |
60. | Davis RJ, Alam NM, Zhao C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue[J]. Stem Cell Reports, 2017, 9(1): 42-49. DOI: 10.1016/j.stemcr.2017.05.016. |
61. | Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space[J]. Stem Cell Reports, 2014, 2(1): 64-77. DOI: 10.1016/j.stemcr.2013.11.005. |
- 1. Sarkar A, Dyawanapelly S. Nanodiagnostics and nanotherapeutics for age-related macular degeneration[J]. J Control Release, 2021, 329: 1262-1282. DOI: 10.1016/j.jconrel.2020.10.054.
- 2. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/s2214-109x(13)70145-1.
- 3. Temple S. Advancing cell therapy for neurodegenerative diseases[J]. Cell Stem Cell, 2023, 30(5): 512-529. DOI: 10.1016/j.stem.2023.03.017.
- 4. Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U. Age-related macular degeneration: a review[J]. JAMA, 2024, 331(2): 147-157. DOI: 10.1001/jama.2023.26074.
- 5. Schultz NM, Bhardwaj S, Barclay C, et al. Global burden of dry age-related macular degeneration: a targeted literature review[J]. Clin Ther, 2021, 43(10): 1792-1818. DOI: 10.1016/j.clinthera.2021.08.011.
- 6. Voelker R. What is age-related macular degeneration?[J]. JAMA, 2024, 331(24): 2142. DOI: 10.1001/jama.2024.4281.
- 7. Niu Y, Ji J, Yao K, et al. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges[J]. Adv Ophthalmol Pract Res, 2024, 4(2): 52-64. DOI: 10.1016/j.aopr.2024.02.001.
- 8. Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[J]. Prog Retin Eye Res, 2019, 69: 38-56. DOI: 10.1016/j.preteyeres.2018.11.003.
- 9. Rohowetz LJ, Koulen P. Stem cell-derived retinal pigment epithelium cell therapy: past and future directions[J/OL]. Front Cell Dev Biol, 2023, 11: 1098406[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37065847/. DOI: 10.3389/fcell.2023.1098406.
- 10. Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: balancing safety and potential[J/OL]. Prog Retin Eye Res, 2020, 75: 100779[2019-09-05]. https://pubmed.ncbi.nlm.nih.gov/31494256/. DOI: 10.1016/j.preteyeres.2019.100779.
- 11. Girgis S, Lee LR. Treatment of dry age-related macular degeneration: a review[J]. Clin Exp Ophthalmol, 2023, 51(8): 835-852. DOI: 10.1111/ceo.14294.
- 12. Sahle FF, Kim S, Niloy KK, et al. Nanotechnology in regenerative ophthalmology[J]. Adv Drug Deliv Rev, 2019, 148: 290-307. DOI: 10.1016/j.addr.2019.10.006.
- 13. Sharma A, Jaganathan BG. Stem cell therapy for retinal degeneration: the evidence to date[J]. Biologics, 2021, 15: 299-306. DOI: 10.2147/btt.S290331.
- 14. Nair DSR, Thomas BB. Stem cell-based treatment strategies for degenerative diseases of the retina[J]. Curr Stem Cell Res Ther, 2022, 17(3): 214-225. DOI: 10.2174/1574888x16666210804112104.
- 15. Mead B, Berry M, Logan A, et al. Stem cell treatment of degenerative eye disease[J]. Stem Cell Res, 2015, 14(3): 243-257. DOI: 10.1016/j.scr.2015.02.003.
- 16. Li T, Lewallen M, Chen S, et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells[J]. Cell Res, 2013, 23(6): 788-802. DOI: 10.1038/cr.2013.48.
- 17. Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032.
- 18. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/s0140-6736(14)61376-3.
- 19. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872. DOI: 10.1016/j.stemcr.2015.04.005.
- 20. Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration[J]. Cell Discov, 2018, 4: 50. DOI: 10.1038/s41421-018-0053-y.
- 21. Da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration[J]. Nat Biotechnol, 2018, 36(4): 328-337. DOI: 10.1038/nbt.4114.
- 22. Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings[J]. J Exp Clin Cancer Res, 2011, 30(1): 9. DOI: 10.1186/1756-9966-30-9.
- 23. 王珊珊. 间充质干细胞治疗年龄相关性黄斑变性研究现状及其局限性[J]. 中华实验眼科杂志, 2019, 37(11): 926-931. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.014.Wang SS. The research status and the limitations of mesenchymal stem cell-based therapies in age-related macular degeneration[J]. Chin J Exp Ophthalmol, 2019, 37(11): 926-931. DOI: 10.3760/cma.j.issn.2095-0160.2019.11.014.
- 24. Prakash N, Kim J, Jeon J, et al. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSC) from pluripotent stem cells (PSCs)[J]. Biomater Res, 2023, 27(1): 31. DOI: 10.1186/s40824-023-00371-0.
- 25. Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell replacement therapy for retinal and optic nerve diseases: cell sources, clinical trials and challenges[J]. Pharmaceutics, 2021, 13(6): 865. DOI: 10.3390/pharmaceutics13060865.
- 26. Usategui-Martín R, Puertas-Neyra K, García-Gutiérrez MT, et al. Human mesenchymal stem cell secretome exhibits a neuroprotective effect over in vitro retinal photoreceptor degeneration[J]. Mol Ther Methods Clin Dev, 2020, 17: 1155-1166. DOI: 10.1016/j.omtm.2020.05.003.
- 27. Tang Y, Kang Y, Zhang X, et al. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration[J]. J Control Release, 2023, 357: 356-370. DOI: 10.1016/j.jconrel.2023.04.003.
- 28. Mathew B, Ravindran S, Liu X, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160. DOI: 10.1016/j.biomaterials.2019.01.016.
- 29. Zhou H, Liu Y, Zhou T, et al. IL-23 priming enhances the neuroprotective effects of MSC-derived exosomes in treating retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2024, 65(10): 8. DOI: 10.1167/iovs.65.10.8.
- 30. Yu B, Shao H, Su C, et al. Exosomes derived from MSC ameliorate retinal laser injury partially by inhibition of MCP-1[J/OL]. Sci Rep, 2016, 6: 34562[2016-09-30]. https://pubmed.ncbi.nlm.nih.gov/27686625/. DOI: 10.1038/srep34562.
- 31. Dezfuly AR, Safaee A, Amirpour N, et al. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats[J/OL]. Life Sci, 2022, 300: 120570[2022-07-01]. https://pubmed.ncbi.nlm.nih.gov/35469914/. DOI: 10.1016/j.lfs.2022.120570.
- 32. Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2051-2059. DOI: 10.1167/iovs.09-4509.
- 33. Bracha P, Moore NA, Ciulla TA. Induced pluripotent stem cell-based therapy for age-related macular degeneration[J]. Expert Opin Biol Ther, 2017, 17(9): 1113-1126. DOI: 10.1080/14712598.2017.1346079.
- 34. Giacalone JC, Parkinson DH, Balikov DA, et al. AMD and stem cell-based therapies[J]. Int Ophthalmol Clin, 2024, 64(1): 21-33. DOI: 10.1097/iio.0000000000000510.
- 35. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046. DOI: 10.1056/NEJMoa1608368.
- 36. Takagi S, Mandai M, Gocho K, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration[J]. Ophthalmol Retina, 2019, 3(10): 850-859. DOI: 10.1016/j.oret.2019.04.021.
- 37. Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation[J]. Stem Cells Dev, 2014, 23(12): 1285-1300. DOI: 10.1089/scd.2013.0620.
- 38. Zhang T, Qian C, Song M, et al. Application prospect of induced pluripotent stem cells in organoids and cell therapy[J/OL]. Int J Mol Sci, 2024, 25(5): 2680[2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/38473926/. DOI: 10.3390/ijms25052680.
- 39. Aoki H. Generation of iPSCs using sendai virus vectors[J]. Methods Mol Biol, 2024, 2794: 121-140. DOI: 10.1007/978-1-0716-3810-1_11.
- 40. Rodriguez-Polo I, Mißbach S, Petkov S, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation[J/OL]. Sci Rep, 2021, 11(1): 15439[2021-07-29]. https://pubmed.ncbi.nlm.nih.gov/34326359/. DOI: 10.1038/s41598-021-94419-7.
- 41. Hartley A, Burger L, Wincek CL, et al. A simple nonviral method to generate human induced pluripotent stem cells using SMAR DNA vectors[J]. Genes (Basel), 2024, 15(5): 575. DOI: 10.3390/genes15050575.
- 42. Yang Y, Liu B, Dong J, et al. Proteins reprogramming: present and future[J/OL]. Scientific World J, 2012, 2012: 453185[2012-11-22]. https://pubmed.ncbi.nlm.nih.gov/23226982/. DOI: 10.1100/2012/453185.
- 43. Lutfi Ismaeel G, Makki AlHassani OJ, R SA, et al. Genetically engineered neural stem cells (NSC) therapy for neurological diseases; state-of-the-art[J/OL]. Biotechnol Prog, 2023, 39(5): e3363[2023-05-23]. https://pubmed.ncbi.nlm.nih.gov/37221947/. DOI: 10.1002/btpr.3363.
- 44. Afarid M, Sanie-Jahromi F. Potential neuroprotective biomolecules in ophthalmology[J]. Int Ophthalmol, 2021, 41(3): 1103-1109. DOI: 10.1007/s10792-020-01634-8.
- 45. Rhee KD, Nusinowitz S, Chao K, et al. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells[J/OL]. Proc Natl Acad Sci USA, 2013, 110(47): E4520-4529[2013-11-19]. https://pubmed.ncbi.nlm.nih.gov/24191003/. DOI: 10.1073/pnas.1303604110.
- 46. Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, et al. Animal models of LED-induced phototoxicity. Short- and long-term in vivo and ex vivo retinal alterations[J/OL]. Life (Basel), 2021, 11(11): 1137[2021-10-26]. https://pubmed.ncbi.nlm.nih.gov/34833013/. DOI: 10.3390/life11111137.
- 47. Mattern L, Otten K, Miskey C, et al. Molecular and functional characterization of BDNF-overexpressing human retinal pigment epithelial cells established by sleeping beauty transposon-mediated gene transfer[J/OL]. Int J Mol Sci, 2022, 23(21): 12982[2022-10-26]. https://pubmed.ncbi.nlm.nih.gov/36361771/. DOI: 10.3390/ijms232112982.
- 48. Amadoro G, Latina V, Balzamino BO, et al. Nerve growth factor-based therapy in Alzheimer's disease and age-related macular degeneration[J/OL]. Front Neurosci, 2021, 15: 735928[2021-09-09]. https://pubmed.ncbi.nlm.nih.gov/34566573/. DOI: 10.3389/fnins.2021.735928.
- 49. Hill D, Compagnoni C, Cordeiro MF. Investigational neuroprotective compounds in clinical trials for retinal disease[J]. Expert Opin Investig Drugs, 2021, 30(5): 571-577. DOI: 10.1080/13543784.2021.1896701.
- 50. Rocco ML, Soligo M, Manni L, et al. Nerve growth factor: early studies and recent clinical trials[J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465. DOI: 10.2174/1570159x16666180412092859.
- 51. Tomczak W, Winkler-Lach W, Tomczyk-Socha M, et al. Advancements in ocular regenerative therapies[J]. Biology (Basel), 2023, 12(5): 737. DOI: 10.3390/biology12050737.
- 52. Liu H, Lu S, Chen M, et al. Towards stem/progenitor cell-based therapies for retinal degeneration[J]. Stem Cell Rev Rep, 2024, 20(6): 1459-1479. DOI: 10.1007/s12015-024-10740-4.
- 53. Karl MO, Hayes S, Nelson BR, et al. Stimulation of neural regeneration in the mouse retina[J]. Proc Natl Acad Sci USA, 2008, 105(49): 19508-19513. DOI: 10.1073/pnas.0807453105.
- 54. Langhe R, Chesneau A, Colozza G, et al. Müller glial cell reactivation in Xenopus models of retinal degeneration[J]. Glia, 2017, 65(8): 1333-1349. DOI: 10.1002/glia.23165.
- 55. Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects[J]. Prog Retin Eye Res, 2009, 28(6): 423-451. DOI: 10.1016/j.preteyeres.2009.07.001.
- 56. Eastlake K, Luis J, Limb GA. Potential of Müller glia for retina neuroprotection[J]. Curr Eye Res, 2020, 45(3): 339-348. DOI: 10.1080/02713683.2019.1648831.
- 57. Shen H, Ding C, Yuan S, et al. Vitamin C and valproic acid-induced fetal RPE stem-like cells recover retinal degeneration via regulating SOX2[J]. Mol Ther, 2020, 28(7): 1645-1657. DOI: 10.1016/j.ymthe.2020.04.008.
- 58. Pan T, Shen H, Yuan S, et al. Combined transplantation with human mesenchymal stem cells improves retinal rescue effect of human fetal RPE cells in retinal degeneration mouse model[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 9. DOI: 10.1167/iovs.61.8.9.
- 59. Liu Z, Parikh BH, Tan QSW, et al. Surgical transplantation of human RPE stem cell derived RPE monolayers into non-human primates with immunosuppression[J]. Stem Cell Reports, 2021, 16(2): 237-251. DOI: 10.1016/j.stemcr.2020.12.007.
- 60. Davis RJ, Alam NM, Zhao C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue[J]. Stem Cell Reports, 2017, 9(1): 42-49. DOI: 10.1016/j.stemcr.2017.05.016.
- 61. Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space[J]. Stem Cell Reports, 2014, 2(1): 64-77. DOI: 10.1016/j.stemcr.2013.11.005.