Hyperreflective foci (HRF) were defined as well-circumscribed and scattered dots with hyperreflective signals in optical coherence tomography (OCT). HRF can be seen in the vitreous cavity as well as the retinal and choroidal layers. Different OCT examination equipment and modes have differences in HRF detection results, and HRF counting methods gradually develop from manual counting to semi-automatic counting and automatic counting. HRF may be lens fragments, inflammatory cells, migrating photoreceptor complexes, exuded proteins or lipids, activated microglia, degenerated photoreceptor cells, migrating retinal pigment epithelial cells, and degraded lipofuscin deposits. The number and distribution of HRF are associated with the progression and the prognosis of a variety of ocular diseases, such as diabetic retinopathy, age-related macular degeneration, central serous chorioretinopathy, retinal dystrophy, etc. HRF are clinically important in guiding the personalized treatment of patients.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Khanifar AA, Koreishi AF, Izatt JA, et al. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration[J]. Ophthalmology, 2008, 115(11): 1883-1890. DOI: 10.1016/j.ophtha.2008.04.041. |
2. | Coscas G, De Benedetto U, Coscas F, et al. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration[J]. Ophthalmologica, 2013, 229(1): 32-37. DOI: 10.1159/000342159. |
3. | Lee H, Kim S, Chung H, et al. Automated quantification of vitreous hyperreflective foci and vitreous haze using optical coherence tomography in patients with uveitis[J]. Retina, 2021, 41(11): 2342-2350. DOI: 10.1097/iae.0000000000003190. |
4. | Lee H, Jang H, Choi YA, et al. Association between soluble cd14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715-721. DOI: 10.1167/iovs.17-23042. |
5. | Chung YR, Lee SY, Kim YH, et al. Hyperreflective foci in diabetic macular edema with serous retinal detachment: association with dyslipidemia[J]. Acta Diabetol, 2020, 57(7): 861-866. DOI: 10.1007/s00592-020-01495-8. |
6. | 梁从碧. 新生血管性年龄相关性黄斑变性中视网膜下高反射物质的研究进展[J]. 中华实验眼科杂志, 2024, 42(5): 487-490. DOI: 10.3760/cma.j.cn115989-20211228-00717.Liang CB. Advances in subretinal hyperreflective material in neovascular age-related macular degeneration[J]. Chin J Exp Ophthalmol, 2024, 42(5): 487-490. DOI: 10.3760/cma.j.cn115989-20211228-00717. |
7. | Kessler LJ, Bagautdinov D, Łabuz G, et al. Semi-automated quantification of retinal and choroidal biomarkers in retinal vascular diseases: agreement of spectral-domain optical coherence tomography with and without enhanced depth imaging mode[J]. Diagnostics (Basel), 2022, 12(2): 333. DOI: 10.3390/diagnostics12020333. |
8. | Mitsch C, Lammer J, Karst S, et al. Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema[J]. Br J Ophthalmol, 2020, 104(6): 868-873. DOI: 10.1136/bjophthalmol-2019-314591. |
9. | Strzalkowski P, Schuster AK, Strzalkowska A, et al. Semi-automated quantification of vitreal hyperreflective foci in sd-oct and their relevance in patients with peripheral retinal breaks[J]. BMC Ophthalmol, 2023, 23(1): 324. DOI: 10.1186/s12886-023-03060-7. |
10. | Hatanaka Y. Retinopathy analysis based on deep convolution neural network[J]. Adv Exp Med Biol, 2020, 1213: 107-120. DOI: 10.1007/978-3-030-33128-3_7. |
11. | Varga L, Kovács A, Grósz T, et al. Automatic segmentation of hyperreflective foci in OCT images[J]. Comput Methods Programs Biomed, 2019, 178: 91-103. DOI: 10.1016/j.cmpb.2019.06.019. |
12. | Yao C, Wang M, Zhu W, et al. Joint segmentation of multi-class hyper-reflective foci in retinal optical coherence tomography images[J]. IEEE Trans Biomed Eng, 2022, 69(4): 1349-1358. DOI: 10.1109/tbme.2021.3115552. |
13. | Davoudi S, Papavasileiou E, Roohipoor R, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes[J]. Retina, 2016, 36(9): 1622-1629. DOI: 10.1097/iae.0000000000001022. |
14. | Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717. DOI: 10.1016/j.ajo.2011.08.041. |
15. | Mizukami T, Hotta Y, Katai N. Higher numbers of hyperreflective foci seen in the vitreous on spectral-domain optical coherence tomographic images in eyes with more severe diabetic retinopathy[J]. Ophthalmologica, 2017, 238(1-2): 74-80. DOI: 10.1159/000473886. |
16. | Roy R, Saurabh K, Shah D, et al. Choroidal hyperreflective foci: a novel spectral domain optical coherence tomography biomarker in eyes with diabetic macular edema[J]. Asia Pac J Ophthalmol (Phila), 2019, 8(4): 314-318. DOI: 10.1097/apo.0000000000000249. |
17. | Schreur V, De Breuk A, Venhuizen FG, et al. Retinal hyperreflective foci in type 1 diabetes mellitus[J]. Retina, 2020, 40(8): 1565-1573. DOI: 10.1097/iae.0000000000002626. |
18. | Wong BS, Sharanjeet-Kaur S, Ngah NF, et al. The correlation between hemoglobin a1c (hba1c) and hyperreflective dots (hrd) in diabetic patients[J/OL]. Int J Environ Res Public Health, 2020, 17(9): 3154[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32369922/. DOI: 10.3390/ijerph17093154. |
19. | Zhou J, Song S, Zhang Y, et al. OCT-based biomarkers are associated with systemic inflammation in patients with treatment-naïve diabetic macular edema[J]. Ophthalmol Ther, 2022, 11(6): 2153-2167. DOI: 10.1007/s40123-022-00576-x. |
20. | Saurabh K, Roy R, Herekar S, et al. Validation of choroidal hyperreflective foci in diabetic macular edema through a retrospective pilot study[J]. Indian J Ophthalmol, 2021, 69(11): 3203-3206. DOI: 10.4103/ijo.IJO_1585_21. |
21. | Szeto SK, Hui VWK, Tang FY, et al. OCT-based biomarkers for predicting treatment response in eyes with centre-involved diabetic macular oedema treated with anti-VEGF injections: a real-life retina clinic-based study[J]. Br J Ophthalmol, 2023, 107(4): 525-533. DOI: 10.1136/bjophthalmol-2021-319587. |
22. | Huang CH, Yang CH, Hsieh YT, et al. Hyperreflective foci in predicting the treatment outcomes of diabetic macular oedema after anti-vascular endothelial growth factor therapy[J/OL]. Sci Rep, 2021, 11(1): 5103[2021-04-03]. https://pubmed.ncbi.nlm.nih.gov/33658601/. DOI: 10.1038/s41598-021-84553-7. |
23. | Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J/OL]. Jpn J Ophthalmol, 2018, 62(3): 292-301[2018-05-19]. https://pubmed.ncbi.nlm.nih.gov/29460019/. DOI: 10.1007/s10384-018-0575-8. |
24. | Park YG, Choi MY, Kwon JW. Factors associated with the duration of action of dexamethasone intravitreal implants in diabetic macular edema patients[J/OL]. Sci Rep, 2019, 9(1): 19588[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31862943/. DOI: 10.1038/s41598-019-56143-1. |
25. | Vujosevic S, Toma C, Villani E, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids[J]. Acta Diabetol, 2020, 57(3): 287-296. DOI: 10.1007/s00592-019-01424-4. |
26. | Maggio E, Mete M, Sartore M, et al. Temporal variation of optical coherence tomography biomarkers as predictors of anti-vegf treatment outcomes in diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(3): 807-815. DOI: 10.1007/s00417-021-05387-7. |
27. | Folgar FA, Chow JH, Farsiu S, et al. Spatial correlation between hyperpigmentary changes on color fundus photography and hyperreflective foci on SDOCT in intermediate amd[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4626-4633. DOI: 10.1167/iovs.12-9813. |
28. | Goh KL, Wintergerst MWM, Abbott CJ, et al. Hyperreflective foci not seen as hyperpigmentary abnormalities on color fundus photographs in age-related macular degeneration[J]. Retina, 2024, 44(2): 214-221. DOI: 10.1097/iae.0000000000003958. |
29. | Pang CE, Messinger JD, Zanzottera EC, et al. The onion sign in neovascular age-related macular degeneration represents cholesterol crystals[J]. Ophthalmology, 2015, 122(11): 2316-2326. DOI: 10.1016/j.ophtha.2015.07.008. |
30. | Christenbury JG, Folgar FA, O'connell RV, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci[J]. Ophthalmology, 2013, 120(5): 1038-1045. DOI: 10.1016/j.ophtha.2012.10.018. |
31. | Wakatsuki Y, Hirabayashi K, Yu HJ, et al. Optical coherence tomography biomarkers for conversion to exudative neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2023, 247: 137-144. DOI: 10.1016/j.ajo.2022.09.018. |
32. | Nassisi M, Fan W, Shi Y, et al. Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3431-3439. DOI: 10.1167/iovs.18-24143. |
33. | Waldstein SM, Vogl WD, Bogunovic H, et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138(7): 740-747. DOI: 10.1001/jamaophthalmol.2020.1376. |
34. | Mao J, Chen N, Zhang S, et al. Association between inflammatory cytokines in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J/OL]. Front Med (Lausanne), 2022, 9: 973025[2022-09-23]. https://pubmed.ncbi.nlm.nih.gov/36213652/. DOI: 10.3389/fmed.2022.973025. |
35. | Jang B, Lee SY, Kim C, et al. Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning[J]. BMC Ophthalmol, 2023, 23(1): 499. DOI: 10.1186/s12886-023-03229-0. |
36. | Hanumunthadu D, Matet A, Rasheed MA, et al. Evaluation of choroidal hyperreflective dots in acute and chronic central serous chorioretinopathy[J]. Indian J Ophthalmol, 2019, 67(11): 1850-1854. DOI: 10.4103/ijo.IJO_2030_18. |
37. | Gergely R, Kovács I, Récsán Z, et al. Predictive factors of selective mineralocorticoid receptor antagonist treatment in chronic central serous chorioretinopathy[J/OL]. Sci Rep, 2020, 10(1): 16621[2020-10-06]. https://pubmed.ncbi.nlm.nih.gov/33024222/. DOI: 10.1038/s41598-020-73959-4. |
38. | Zhang C, Mao J, Zhang S, et al. Analysis of cytokine levels based on optical coherence tomography findings in acute and chronic central serous chorioretinopathy[J]. Curr Eye Res, 2023, 48(12): 1153-1159. DOI: 10.1080/02713683.2023.2250584. |
39. | Ruiz-Medrano J, Pellegrini M, Cereda MG, et al. Choroidal characteristics of acute and chronic central serous chorioretinopathy using enhanced depth imaging optical coherence tomography[J]. Eur J Ophthalmol, 2017, 27(4): 476-480. DOI: 10.5301/ejo.5000796. |
40. | Hanumunthadu D, Van Dijk EHC, Gangakhedkar S, et al. Gender variation in central serous chorioretinopathy[J]. Eye (Lond), 2018, 32(11): 1703-1709. DOI: 10.1038/s41433-018-0163-7. |
41. | Parajuli A, Joshi P. Factors influencing the episode duration and the anatomical and functional outcome in cases of acute central serous chorioretinopathy[J/OL]. BMJ Open Ophthalmol, 2020, 5(1): e000540[2020-12-01]. https://pubmed.ncbi.nlm.nih.gov/33305002/. DOI: 10.1136/bmjophth-2020-000540. |
42. | Mirshahi R, Naseripour M, Ghomashi A, et al. Clinical predictive factors and imaging biomarkers of treatment response to half dose pdt in patients with chronic central serous chorioretinopathy[J/OL]. Photodiagnosis Photodyn Ther, 2024, 48: 104224[2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/38801855/. DOI: 10.1016/j.pdpdt.2024.104224. |
43. | Arrigo A, Calamuneri A, Aragona E, et al. Structural OCT parameters associated with treatment response and macular neovascularization onset in central serous chorioretinopathy[J]. Ophthalmol Ther, 2021, 10(2): 289-298. DOI: 10.1007/s40123-021-00336-3. |
44. | Kiraly P, Smrekar J, Jaki Mekjavić P. Morphological parameters predicting subthreshold micropulse laser effectiveness in central serous chorioretinopathy[J]. Lasers Med Sci, 2022, 37(8): 3129-3136. DOI: 10.1007/s10103-022-03574-4. |
45. | Lee H, Lee J, Chung H, et al. Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy[J]. Retina, 2016, 36(7): 1372-1380. DOI: 10.1097/iae.0000000000000929. |
46. | Borrelli E, Battista M, Sacconi R, et al. OCT risk factors for 3-year development of macular complications in eyes with "resolved" chronic central serous chorioretinopathy[J]. Am J Ophthalmol, 2021, 223: 129-139. DOI: 10.1016/j.ajo.2020.10.011. |
47. | Li Z, Deng X, Lu T, et al. Hyperreflective material serves as a potential biomarker of dyslipidemia in diabetic macular edema[J/OL]. Photodiagnosis Photodyn Ther, 2022, 39: 102903[2022-05-06]. https://pubmed.ncbi.nlm.nih.gov/35533992/. DOI: 10.1016/j.pdpdt.2022.102903. |
48. | Battaglia Parodi M, Sacconi R, Romano F, et al. Hyperreflective foci in stargardt disease: 1-year follow-up[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(1): 41-48. DOI: 10.1007/s00417-018-4167-6. |
49. | Huang CH, Yang CH, Lai YJ, et al. Hyperreflective foci as important prognostic indicators of progression of retinitis pigmentosa[J]. Retina, 2022, 42(2): 388-395. DOI: 10.1097/iae.0000000000003301. |
50. | Piri N, Nesmith BL, Schaal S. Choroidal hyperreflective foci in stargardt disease shown by spectral-domain optical coherence tomography imaging: correlation with disease severity[J]. JAMA Ophthalmol, 2015, 133(4): 398-405. DOI: 10.1001/jamaophthalmol.2014.5604. |
51. | Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion[J]. Retina, 2012, 32(1): 77-85. DOI: 10.1097/IAE.0b013e318217ffc7. |
52. | Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after bevacizumab or dexamethasone treatment according to duration of macular edema in patients with branch retinal vein occlusion[J]. Retina, 2021, 41(2): 355-365. DOI: 10.1097/iae.0000000000002826. |
53. | Tang F, Qin X, Lu J, et al. Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept[J]. Retina, 2020, 40(4): 773-785. DOI: 10.1097/iae.0000000000002444. |
54. | Kang JW, Lee H, Chung H, et al. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(9): 1413-1421. DOI: 10.1007/s00417-014-2595-5. |
55. | Yiu G, Huang D, Wang Y, et al. Predictors of as-needed ranibizumab injection frequency in patients with macular edema following retinal vein occlusion[J]. Am J Ophthalmol, 2023, 249: 74-81. DOI: 10.1016/j.ajo.2023.01.004. |
56. | Yiu G, Welch RJ, Wang Y, et al. Spectral-domain OCT predictors of visual outcomes after ranibizumab treatment for macular edema resulting from retinal vein occlusion[J]. Ophthalmol Retina, 2020, 4(1): 67-76. DOI: 10.1016/j.oret.2019.08.009. |
57. | Horozoglu F, Sener H, Polat OA, et al. Predictive impact of optical coherence tomography biomarkers in anti-vascular endothelial growth factor resistant macular edema treated with dexamethasone implant[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103167[2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/36261095/. DOI: 10.1016/j.pdpdt.2022.103167. |
58. | Predović J, Bosnar D, Marković L, et al. Vitreous hyper-reflective dots and the macular thickness after cataract surgery[J/OL]. PLoS One, 2024, 19(4): e0300148[2024-04-09]. https://pubmed.ncbi.nlm.nih.gov/38593138/. DOI: 10.1371/journal.pone.0300148. |
59. | Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease[J]. Retina, 2013, 33(3): 559-565. DOI: 10.1097/IAE.0b013e31826710ea. |
60. | Oh JH, Oh J, Roh HC. Vitreous hyper-reflective dots in optical coherence tomography and retinal tear in patients with acute posterior vitreous detachment[J]. Curr Eye Res, 2017, 42(8): 1179-1184. DOI: 10.1080/02713683.2017.1289226. |
- 1. Khanifar AA, Koreishi AF, Izatt JA, et al. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration[J]. Ophthalmology, 2008, 115(11): 1883-1890. DOI: 10.1016/j.ophtha.2008.04.041.
- 2. Coscas G, De Benedetto U, Coscas F, et al. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration[J]. Ophthalmologica, 2013, 229(1): 32-37. DOI: 10.1159/000342159.
- 3. Lee H, Kim S, Chung H, et al. Automated quantification of vitreous hyperreflective foci and vitreous haze using optical coherence tomography in patients with uveitis[J]. Retina, 2021, 41(11): 2342-2350. DOI: 10.1097/iae.0000000000003190.
- 4. Lee H, Jang H, Choi YA, et al. Association between soluble cd14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715-721. DOI: 10.1167/iovs.17-23042.
- 5. Chung YR, Lee SY, Kim YH, et al. Hyperreflective foci in diabetic macular edema with serous retinal detachment: association with dyslipidemia[J]. Acta Diabetol, 2020, 57(7): 861-866. DOI: 10.1007/s00592-020-01495-8.
- 6. 梁从碧. 新生血管性年龄相关性黄斑变性中视网膜下高反射物质的研究进展[J]. 中华实验眼科杂志, 2024, 42(5): 487-490. DOI: 10.3760/cma.j.cn115989-20211228-00717.Liang CB. Advances in subretinal hyperreflective material in neovascular age-related macular degeneration[J]. Chin J Exp Ophthalmol, 2024, 42(5): 487-490. DOI: 10.3760/cma.j.cn115989-20211228-00717.
- 7. Kessler LJ, Bagautdinov D, Łabuz G, et al. Semi-automated quantification of retinal and choroidal biomarkers in retinal vascular diseases: agreement of spectral-domain optical coherence tomography with and without enhanced depth imaging mode[J]. Diagnostics (Basel), 2022, 12(2): 333. DOI: 10.3390/diagnostics12020333.
- 8. Mitsch C, Lammer J, Karst S, et al. Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema[J]. Br J Ophthalmol, 2020, 104(6): 868-873. DOI: 10.1136/bjophthalmol-2019-314591.
- 9. Strzalkowski P, Schuster AK, Strzalkowska A, et al. Semi-automated quantification of vitreal hyperreflective foci in sd-oct and their relevance in patients with peripheral retinal breaks[J]. BMC Ophthalmol, 2023, 23(1): 324. DOI: 10.1186/s12886-023-03060-7.
- 10. Hatanaka Y. Retinopathy analysis based on deep convolution neural network[J]. Adv Exp Med Biol, 2020, 1213: 107-120. DOI: 10.1007/978-3-030-33128-3_7.
- 11. Varga L, Kovács A, Grósz T, et al. Automatic segmentation of hyperreflective foci in OCT images[J]. Comput Methods Programs Biomed, 2019, 178: 91-103. DOI: 10.1016/j.cmpb.2019.06.019.
- 12. Yao C, Wang M, Zhu W, et al. Joint segmentation of multi-class hyper-reflective foci in retinal optical coherence tomography images[J]. IEEE Trans Biomed Eng, 2022, 69(4): 1349-1358. DOI: 10.1109/tbme.2021.3115552.
- 13. Davoudi S, Papavasileiou E, Roohipoor R, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes[J]. Retina, 2016, 36(9): 1622-1629. DOI: 10.1097/iae.0000000000001022.
- 14. Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717. DOI: 10.1016/j.ajo.2011.08.041.
- 15. Mizukami T, Hotta Y, Katai N. Higher numbers of hyperreflective foci seen in the vitreous on spectral-domain optical coherence tomographic images in eyes with more severe diabetic retinopathy[J]. Ophthalmologica, 2017, 238(1-2): 74-80. DOI: 10.1159/000473886.
- 16. Roy R, Saurabh K, Shah D, et al. Choroidal hyperreflective foci: a novel spectral domain optical coherence tomography biomarker in eyes with diabetic macular edema[J]. Asia Pac J Ophthalmol (Phila), 2019, 8(4): 314-318. DOI: 10.1097/apo.0000000000000249.
- 17. Schreur V, De Breuk A, Venhuizen FG, et al. Retinal hyperreflective foci in type 1 diabetes mellitus[J]. Retina, 2020, 40(8): 1565-1573. DOI: 10.1097/iae.0000000000002626.
- 18. Wong BS, Sharanjeet-Kaur S, Ngah NF, et al. The correlation between hemoglobin a1c (hba1c) and hyperreflective dots (hrd) in diabetic patients[J/OL]. Int J Environ Res Public Health, 2020, 17(9): 3154[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32369922/. DOI: 10.3390/ijerph17093154.
- 19. Zhou J, Song S, Zhang Y, et al. OCT-based biomarkers are associated with systemic inflammation in patients with treatment-naïve diabetic macular edema[J]. Ophthalmol Ther, 2022, 11(6): 2153-2167. DOI: 10.1007/s40123-022-00576-x.
- 20. Saurabh K, Roy R, Herekar S, et al. Validation of choroidal hyperreflective foci in diabetic macular edema through a retrospective pilot study[J]. Indian J Ophthalmol, 2021, 69(11): 3203-3206. DOI: 10.4103/ijo.IJO_1585_21.
- 21. Szeto SK, Hui VWK, Tang FY, et al. OCT-based biomarkers for predicting treatment response in eyes with centre-involved diabetic macular oedema treated with anti-VEGF injections: a real-life retina clinic-based study[J]. Br J Ophthalmol, 2023, 107(4): 525-533. DOI: 10.1136/bjophthalmol-2021-319587.
- 22. Huang CH, Yang CH, Hsieh YT, et al. Hyperreflective foci in predicting the treatment outcomes of diabetic macular oedema after anti-vascular endothelial growth factor therapy[J/OL]. Sci Rep, 2021, 11(1): 5103[2021-04-03]. https://pubmed.ncbi.nlm.nih.gov/33658601/. DOI: 10.1038/s41598-021-84553-7.
- 23. Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J/OL]. Jpn J Ophthalmol, 2018, 62(3): 292-301[2018-05-19]. https://pubmed.ncbi.nlm.nih.gov/29460019/. DOI: 10.1007/s10384-018-0575-8.
- 24. Park YG, Choi MY, Kwon JW. Factors associated with the duration of action of dexamethasone intravitreal implants in diabetic macular edema patients[J/OL]. Sci Rep, 2019, 9(1): 19588[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31862943/. DOI: 10.1038/s41598-019-56143-1.
- 25. Vujosevic S, Toma C, Villani E, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids[J]. Acta Diabetol, 2020, 57(3): 287-296. DOI: 10.1007/s00592-019-01424-4.
- 26. Maggio E, Mete M, Sartore M, et al. Temporal variation of optical coherence tomography biomarkers as predictors of anti-vegf treatment outcomes in diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(3): 807-815. DOI: 10.1007/s00417-021-05387-7.
- 27. Folgar FA, Chow JH, Farsiu S, et al. Spatial correlation between hyperpigmentary changes on color fundus photography and hyperreflective foci on SDOCT in intermediate amd[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4626-4633. DOI: 10.1167/iovs.12-9813.
- 28. Goh KL, Wintergerst MWM, Abbott CJ, et al. Hyperreflective foci not seen as hyperpigmentary abnormalities on color fundus photographs in age-related macular degeneration[J]. Retina, 2024, 44(2): 214-221. DOI: 10.1097/iae.0000000000003958.
- 29. Pang CE, Messinger JD, Zanzottera EC, et al. The onion sign in neovascular age-related macular degeneration represents cholesterol crystals[J]. Ophthalmology, 2015, 122(11): 2316-2326. DOI: 10.1016/j.ophtha.2015.07.008.
- 30. Christenbury JG, Folgar FA, O'connell RV, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci[J]. Ophthalmology, 2013, 120(5): 1038-1045. DOI: 10.1016/j.ophtha.2012.10.018.
- 31. Wakatsuki Y, Hirabayashi K, Yu HJ, et al. Optical coherence tomography biomarkers for conversion to exudative neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2023, 247: 137-144. DOI: 10.1016/j.ajo.2022.09.018.
- 32. Nassisi M, Fan W, Shi Y, et al. Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3431-3439. DOI: 10.1167/iovs.18-24143.
- 33. Waldstein SM, Vogl WD, Bogunovic H, et al. Characterization of drusen and hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in optical coherence tomography[J]. JAMA Ophthalmol, 2020, 138(7): 740-747. DOI: 10.1001/jamaophthalmol.2020.1376.
- 34. Mao J, Chen N, Zhang S, et al. Association between inflammatory cytokines in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J/OL]. Front Med (Lausanne), 2022, 9: 973025[2022-09-23]. https://pubmed.ncbi.nlm.nih.gov/36213652/. DOI: 10.3389/fmed.2022.973025.
- 35. Jang B, Lee SY, Kim C, et al. Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning[J]. BMC Ophthalmol, 2023, 23(1): 499. DOI: 10.1186/s12886-023-03229-0.
- 36. Hanumunthadu D, Matet A, Rasheed MA, et al. Evaluation of choroidal hyperreflective dots in acute and chronic central serous chorioretinopathy[J]. Indian J Ophthalmol, 2019, 67(11): 1850-1854. DOI: 10.4103/ijo.IJO_2030_18.
- 37. Gergely R, Kovács I, Récsán Z, et al. Predictive factors of selective mineralocorticoid receptor antagonist treatment in chronic central serous chorioretinopathy[J/OL]. Sci Rep, 2020, 10(1): 16621[2020-10-06]. https://pubmed.ncbi.nlm.nih.gov/33024222/. DOI: 10.1038/s41598-020-73959-4.
- 38. Zhang C, Mao J, Zhang S, et al. Analysis of cytokine levels based on optical coherence tomography findings in acute and chronic central serous chorioretinopathy[J]. Curr Eye Res, 2023, 48(12): 1153-1159. DOI: 10.1080/02713683.2023.2250584.
- 39. Ruiz-Medrano J, Pellegrini M, Cereda MG, et al. Choroidal characteristics of acute and chronic central serous chorioretinopathy using enhanced depth imaging optical coherence tomography[J]. Eur J Ophthalmol, 2017, 27(4): 476-480. DOI: 10.5301/ejo.5000796.
- 40. Hanumunthadu D, Van Dijk EHC, Gangakhedkar S, et al. Gender variation in central serous chorioretinopathy[J]. Eye (Lond), 2018, 32(11): 1703-1709. DOI: 10.1038/s41433-018-0163-7.
- 41. Parajuli A, Joshi P. Factors influencing the episode duration and the anatomical and functional outcome in cases of acute central serous chorioretinopathy[J/OL]. BMJ Open Ophthalmol, 2020, 5(1): e000540[2020-12-01]. https://pubmed.ncbi.nlm.nih.gov/33305002/. DOI: 10.1136/bmjophth-2020-000540.
- 42. Mirshahi R, Naseripour M, Ghomashi A, et al. Clinical predictive factors and imaging biomarkers of treatment response to half dose pdt in patients with chronic central serous chorioretinopathy[J/OL]. Photodiagnosis Photodyn Ther, 2024, 48: 104224[2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/38801855/. DOI: 10.1016/j.pdpdt.2024.104224.
- 43. Arrigo A, Calamuneri A, Aragona E, et al. Structural OCT parameters associated with treatment response and macular neovascularization onset in central serous chorioretinopathy[J]. Ophthalmol Ther, 2021, 10(2): 289-298. DOI: 10.1007/s40123-021-00336-3.
- 44. Kiraly P, Smrekar J, Jaki Mekjavić P. Morphological parameters predicting subthreshold micropulse laser effectiveness in central serous chorioretinopathy[J]. Lasers Med Sci, 2022, 37(8): 3129-3136. DOI: 10.1007/s10103-022-03574-4.
- 45. Lee H, Lee J, Chung H, et al. Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy[J]. Retina, 2016, 36(7): 1372-1380. DOI: 10.1097/iae.0000000000000929.
- 46. Borrelli E, Battista M, Sacconi R, et al. OCT risk factors for 3-year development of macular complications in eyes with "resolved" chronic central serous chorioretinopathy[J]. Am J Ophthalmol, 2021, 223: 129-139. DOI: 10.1016/j.ajo.2020.10.011.
- 47. Li Z, Deng X, Lu T, et al. Hyperreflective material serves as a potential biomarker of dyslipidemia in diabetic macular edema[J/OL]. Photodiagnosis Photodyn Ther, 2022, 39: 102903[2022-05-06]. https://pubmed.ncbi.nlm.nih.gov/35533992/. DOI: 10.1016/j.pdpdt.2022.102903.
- 48. Battaglia Parodi M, Sacconi R, Romano F, et al. Hyperreflective foci in stargardt disease: 1-year follow-up[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(1): 41-48. DOI: 10.1007/s00417-018-4167-6.
- 49. Huang CH, Yang CH, Lai YJ, et al. Hyperreflective foci as important prognostic indicators of progression of retinitis pigmentosa[J]. Retina, 2022, 42(2): 388-395. DOI: 10.1097/iae.0000000000003301.
- 50. Piri N, Nesmith BL, Schaal S. Choroidal hyperreflective foci in stargardt disease shown by spectral-domain optical coherence tomography imaging: correlation with disease severity[J]. JAMA Ophthalmol, 2015, 133(4): 398-405. DOI: 10.1001/jamaophthalmol.2014.5604.
- 51. Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion[J]. Retina, 2012, 32(1): 77-85. DOI: 10.1097/IAE.0b013e318217ffc7.
- 52. Do JR, Park SJ, Shin JP, et al. Assessment of hyperreflective foci after bevacizumab or dexamethasone treatment according to duration of macular edema in patients with branch retinal vein occlusion[J]. Retina, 2021, 41(2): 355-365. DOI: 10.1097/iae.0000000000002826.
- 53. Tang F, Qin X, Lu J, et al. Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept[J]. Retina, 2020, 40(4): 773-785. DOI: 10.1097/iae.0000000000002444.
- 54. Kang JW, Lee H, Chung H, et al. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(9): 1413-1421. DOI: 10.1007/s00417-014-2595-5.
- 55. Yiu G, Huang D, Wang Y, et al. Predictors of as-needed ranibizumab injection frequency in patients with macular edema following retinal vein occlusion[J]. Am J Ophthalmol, 2023, 249: 74-81. DOI: 10.1016/j.ajo.2023.01.004.
- 56. Yiu G, Welch RJ, Wang Y, et al. Spectral-domain OCT predictors of visual outcomes after ranibizumab treatment for macular edema resulting from retinal vein occlusion[J]. Ophthalmol Retina, 2020, 4(1): 67-76. DOI: 10.1016/j.oret.2019.08.009.
- 57. Horozoglu F, Sener H, Polat OA, et al. Predictive impact of optical coherence tomography biomarkers in anti-vascular endothelial growth factor resistant macular edema treated with dexamethasone implant[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103167[2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/36261095/. DOI: 10.1016/j.pdpdt.2022.103167.
- 58. Predović J, Bosnar D, Marković L, et al. Vitreous hyper-reflective dots and the macular thickness after cataract surgery[J/OL]. PLoS One, 2024, 19(4): e0300148[2024-04-09]. https://pubmed.ncbi.nlm.nih.gov/38593138/. DOI: 10.1371/journal.pone.0300148.
- 59. Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease[J]. Retina, 2013, 33(3): 559-565. DOI: 10.1097/IAE.0b013e31826710ea.
- 60. Oh JH, Oh J, Roh HC. Vitreous hyper-reflective dots in optical coherence tomography and retinal tear in patients with acute posterior vitreous detachment[J]. Curr Eye Res, 2017, 42(8): 1179-1184. DOI: 10.1080/02713683.2017.1289226.