1. |
Abcouwer SF, Shanmugam S, Muthusamy A, et al. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury[J/OL]. J Neuroinflammation, 2021, 18(1): 186[2021-08-26]. https://pubmed.ncbi.nlm.nih.gov/34446062/. DOI: 10.1186/s12974-021-02237-5.
|
2. |
Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[J/OL]. J Neuroinflammation, 2022, 19(1): 261[2022-10-26]. https://pubmed.ncbi.nlm.nih.gov/36289494/. DOI: 10.1186/s12974-022-02621-9.
|
3. |
Wang JH, Kumar S, Liu GS. Bulk gene expression deconvolution reveals infiltration of M2 macrophages in retinal neovascularization[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(14): 22[2021-11-01]. https://pubmed.ncbi.nlm.nih.gov/34797904/. DOI: 10.1167/iovs.62.14.22.
|
4. |
Mokhtar ER, Elmadbouly AA, Abo Elkheir OI, et al. Peripheral blood B-cell subsets frequency and distribution and the BSF-2(IL-6) to CSIF: TGIF(IL-10) ratio as severity-associated signatures in primary open-angle glaucoma: a case-controlled study[J/OL]. Biomedicines, 2024, 12(3): 485[2024-02-21]. https://pubmed.ncbi.nlm.nih.gov/38540099/. DOI: 10.3390/biomedicines12030485.
|
5. |
Zuber V, Grinberg NF, Gill D, et al. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches[J]. Am J Hum Genet, 2022, 109(5): 767-782. DOI: 10.1016/j.ajhg.2022.04.001.
|
6. |
Strunz T, Kiel C, Grassmann F, et al. A meta-analysis of expression quantitative trait loci in retinal tissue[J/OL]. PLoS Genet, 2020, 16(9): e1008934[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32870927/. DOI: 10.1371/journal.pgen.1008934.
|
7. |
Hamel AR, Yan W, Rouhana JM, et al. Integrating genetic regulation and single-cell expression with GWAS pri- oritizes causal genes and cell types for glaucoma[J/OL]. Nat Commun, 2024, 15(1): 396[2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/38195602/. DOI: 10.1038/s41467-023-44380-y.
|
8. |
Han X, Lains I, Li J, et al. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration[J/OL]. Cell Rep Med, 2023, 4(7): 101085[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37348500/. DOI: 10.1016/j.xcrm.2023.101085.
|
9. |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: The STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. DOI: 10.1001/jama.2021.18236.
|
10. |
Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. DOI: 10.1038/s41588-020-0684-4.
|
11. |
Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study[J/OL]. BMC Psychiatry, 2023, 23(1): 590[2023-08-15]. https://pubmed.ncbi.nlm.nih.gov/37582716/. DOI: 10.1186/s12888-023-05081-4.
|
12. |
Cao Z, Wu T, Fang Y, et al. Dissecting causal relationships between immune cells, plasma metabolites, and COPD: a mediating Mendelian randomization study[J/OL]. Front Immunol, 2024, 15: 1406234[2024-05-28]. https://pubmed.ncbi.nlm.nih.gov/38868780/. DOI: 10.3389/fimmu.2024.1406234.
|
13. |
王雪婷, 党亚龙, 雷方. 免疫细胞与近视之间的因果关系—基于双样本双向及多变量孟德尔随机化分析[J]. 眼科新进展, 2025, 45(3): 221-226. DOI: 10.13389/j.enki. rao.2025.0039. DOI: 10.13389/j.enki.rao.2025.0039.Wang XT, Dang YL, Lei F. Causal relationship between immune cells and myopia: a two-sample bidirec-tional and multivariable Mendelian randomization analysis[J]. Rec Adv Ophthalmol, 2025, 45(3): 221-226. DOI: 10.13389/j.enki. rao.2025.0039. DOI: 10.13389/j.enki.rao.2025.0039.
|
14. |
Li W, Xu JW, Chai JL, et al. Complex causal association between genetically predicted 731 immunocyte phenotype and osteonecrosis: a bidirectional two-sample Mendelian randomization analysis[J]. Int J Surg, 2024, 110(6): 3285-3293. DOI: 10.1097/JS9.0000000000001327.
|
15. |
Li X, Cheng S, Cheng J, et al. Habitual coffee consumption increases risk of primary open-angle glaucoma: a Mendelian randomization study[J]. Ophthalmology, 2022, 129(9): 1014-1021. DOI: 10.1016/j.ophtha.2022.04.027.
|
16. |
Papadimitriou N, Dimou N, Tsilidis KK, et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis[J/OL]. Nat Commun, 2020, 11(1): 597[2020-01-30]. https://pubmed.ncbi.nlm.nih.gov/32001714/. DOI: 10.1038/s41467-020-14389-8.
|
17. |
Benjamini Y, Drai D, Elmer G, et al. Controlling the false discovery rate in behavior genetics research[J/OL]. Behav Brain Res, 2001, 125(1-2): 279-284. DOI: 10.1016/s0166-4328(01)00297-2.
|
18. |
Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption[J]. Int J Epidemiol, 2019, 48(3): 728-742. DOI: 10.1093/ije/dyy258.
|
19. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
|
20. |
Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J/OL]. PLoS Genet, 2014, 10(5): e1004383[2014-05-15]. https://pubmed.ncbi.nlm.nih.gov/24830394/. DOI: 10.1371/journal.pgen.1004383.
|
21. |
de Klein N, Tsai EA, Vochteloo M, et al. Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases[J]. Nat Genet, 2023, 55(3): 377-388. DOI: 10.1038/s41588-023-01300-6.
|
22. |
Deng YT, Ou YN, Wu BS, et al. Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood[J]. Mol Psychiatry, 2022, 27(6): 2849-2857. DOI: 10.1038/s41380-022-01507-9.
|
23. |
Spielmann M, Lupiáñez DG, Mundlos S. Structural variation in the 3D genome[J]. Nat Rev Genet, 2018, 19(7): 453-467. DOI: 10.1038/s41576-018-0007-0.
|
24. |
Tang X, Zhang L, Wei W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF[J]. Immunol Lett, 2018, 196: 113-118. DOI: 10.1016/j.imlet.2018.01.010.
|
25. |
Hu S, Wang R, Zhang M, et al. BAFF promotes T cell activation through the BAFF-BAFF-R-PI3K-Akt signaling pathway[J/OL]. Biomed Pharmacother, 2019, 114: 108796[2019-03-25]. https://pubmed.ncbi.nlm.nih.gov/30921706/. DOI: 10.1016/j.biopha. 2019.108796.
|
26. |
Damianidou O, Theotokis P, Grigoriadis N, et al. Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process[J]. Int J Med Sci, 2022, 19(1): 164-174. DOI: 10.7150/ijms.66350.
|
27. |
Shen X, Zhu W, Zhang X, et al. A role of both NF-κB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells[J]. Mol Cell Biochem, 2011, 357(1-2): 21-30. DOI: 10.1007/s11010-011-0871-9.
|
28. |
Huang H, Gandhi JK, Zhong XF, et al. TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1336-1344. DOI: 10.1167/iovs.10-5768.
|
29. |
González-Serna D, Carmona EG, Ortego-Centeno N, et al. A TNFSF13B functional variant is not involved in systemic sclerosis and giant cell arteritis susceptibility[J/OL]. PLoS One, 2018, 13(12): e0209343[2018-12-26]. https://pubmed.ncbi.nlm.nih.gov/30586461/. DOI: 10.1371/journal.pone.0209343.
|
30. |
Zhang Y, Tian J, Xiao F, et al. B cell-activating factor and its targeted therapy in autoimmune diseases[J]. Cytokine Growth Factor Rev, 2022, 64: 57-70. DOI: 10.1016/j.cytogfr.2021.11.004.
|
31. |
Liu C, Wang Y, Dao YY, et al. Upregulation of CENPM facilitates lung adenocarcinoma progression via PI3K/AKT/mTOR signaling pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(1): 99-112. DOI: 10.3724/abbs.2021013.
|
32. |
Sohn EJ, Paape MJ, Bannerman DD, et al. Shedding of sCD14 by bovine neutrophils following activation with bacterial lipopolysaccharide results in down-regulation of IL-8[J]. Vet Res, 2007, 38(1): 95-108. DOI: 10.1051/vetres:2006052.
|
33. |
Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715-721. DOI: 10.1167/iovs.17-23042.
|
34. |
Yuan S, Xu F, Li X, et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses[J/OL]. Cell Rep Med, 2023, 4(9): 101174[2023-09-19]. https://pubmed.ncbi.nlm.nih.gov/37652020/. DOI: 10.1016/j.xcrm.2023.101174.
|
35. |
Liao D, Fan W, Li N, et al. A single cell atlas of circulating immune cells involved in diabetic retinopathy[J/OL]. iScience, 2024, 27(2): 109003[2024-01-26]. https://pubmed.ncbi.nlm.nih.gov/38327792/. DOI: 10.1016/j.isci.2024.109003.
|
36. |
Roy-Chowdhury E, Brauns N, Helmke A, et al. Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1-CX3CL1 interaction[J]. Cardiovasc Res, 2021, 117(6): 1510-1522. DOI: 10.1093/cvr/cvaa234.
|
37. |
Qian X, Zheng Y, Xu L, et al. Deciphering the role of CX3CL1-CX3CR1 in aortic aneurysm pathogenesis: insights from Mendelian randomization and transcriptomic analyses[J/OL]. Front Immunol, 2024, 15: 1383607[2024-04-23]. https://pubmed.ncbi.nlm.nih.gov/38715600/. DOI: 10.3389/fimmu.2024.1383607.
|
38. |
Zhuang Q, Ou J, Zhang S, et al. Crosstalk between the CX3CL1/CX3CR1 axis and inflammatory signaling pathways in tissue injury[J]. Curr Protein Pept Sci, 2019, 20(8): 844-854. DOI: 10.2174/1389203720666190305165722.
|
39. |
Jiang L, Zhang X, Wang S, et al. Functional monomers equipped microgel system for managing Parkinson's disease by intervening chemokine axis-mediated nerve cell communications[J/OL]. Adv Sci (Weinh), 2025, 12(7): e2410070[2024-12-25]. https://pubmed.ncbi.nlm.nih.gov/39721010/. DOI: 10.1002/advs.202410070.
|
40. |
Zhang P, Gao C, Guo Q, et al. Single-cell RNA sequencing reveals the evolution of the immune landscape during perihematomal edema progression after intracerebral hemorrhage[J/OL]. J Neuroinflammation, 2024, 21(1): 140[2024-05-28]. https://pubmed.ncbi.nlm.nih.gov/38807233/. DOI: 10.1186/s12974-024-03113-8.
|
41. |
Mills SA, Jobling AI, Dixon MA, et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy[J/OL]. Proc Natl Acad Sci USA, 2021, 118(51): e2112561118[2021-12-21]. https://pubmed.ncbi.nlm.nih.gov/34903661/. DOI: 10.1073/pnas.2112561118.
|
42. |
Balmer ML, Ma EH, Thompson AJ, et al. Memory CD8+ T cells balance pro- and anti-inflammatory activity by reprogramming cellular acetate handling at sites of infection[J]. Cell Metab, 2020, 32(3): 457-467. DOI: 10.1016/j.cmet.2020.07.004.
|
43. |
Deliyanti D, Figgett WA, Gebhardt T, et al. CD8+T cells promote pathological angiogenesis in ocular neovascular disease[J]. Arterioscler Thromb Vasc Biol, 2023, 43(4): 522-536. DOI: 10. 1161/ATVBAHA.122.318079. DOI: 10.1161/ATVBAHA.122.318079.
|
44. |
Al Barashdi MA, Ali A, McMullin MF, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol, 2021, 74(9): 548-552. DOI: 10.1136/jclinpath-2020-206927.
|
45. |
Schuette V, Embgenbroich M, Ulas T, et al. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4[J]. Proc Natl Acad Sci USA, 2016, 113(38): 10649-10654. DOI: 10.1073/pnas.1605885113.
|
46. |
Tian Y, Babor M, Lane J, et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA[J/OL]. Nat Commun, 2017, 8(1): 1473[2017-11-13]. https://pubmed.ncbi.nlm.nih.gov/29133794/. DOI: 10.1038/s41467-017-01728-5.
|
47. |
Pasciuto E, Burton OT, Roca CP, et al. Microglia require CD4 T cells to complete the fetal-to-adult transition[J]. Cell, 2020, 182(3): 625-640. DOI: 10.1016/j.cell.2020.06.026.
|
48. |
Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[J/OL]. Nat Commun, 2018, 9(1): 3209[2018-08-10]. https://pubmed.ncbi.nlm.nih.gov/30097565/. DOI: 10.1038/ s41467-018-05681-9.
|
49. |
Eskandari-Sedighi G, Crichton M, Zia S, et al. Alzheimer’s disease associated isoforms of human CD33 distinctively modulate microglial cell responses in 5XFAD mice[J/OL]. Mol Neurodegener, 2024, 19(1): 42[2024-05-27]. https://pubmed.ncbi.nlm.nih.gov/38802940/. DOI: 10.1186/s13024-024-00734-8.
|
50. |
Kesler A, Shalev V, Rogowski O, et al. Comparative analysis of homo-cysteine concentrations in patients with retinal vein occlusion versus thrombotic and atherosclerotic disorders[J]. Blood Coagul Fibrinolysis, 2008, 19(4): 259-262. DOI: 10.1097/MBC.0b013e3282f2b60e.
|
51. |
Spangler JB, Tomala J, Luca VC, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms[J]. Immunity, 2015, 42(5): 815-825. DOI: 10.1016/j.immuni.2015.04.015.
|
52. |
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, et al. The role of T cells in age-related diseases[J]. Nat Rev Immunol, 2022, 22(2): 97-111. DOI: 10.1038/s41577-021-00557-4.
|
53. |
Fan L, Liu J, Hu W, et al. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans[J]. Cell Res, 2024, 34(6): 407-427. DOI: 10.1038/ s41422-024-00945-0. DOI: 10.1038/s41422-024-00945-0.
|