1. |
Fabian ID, Sagoo MS. Understanding retinoblastoma: epidemiology and genetics[J]. Community Eye Health, 2018, 31(101): 7.
|
2. |
Aerts I, Lumbroso-Le Rouic L, Gauthier-Villars M, et al. Retinoblastoma[J/OL]. Orphanet J Rare Dis, 2006, 1: 31[2006-08-25]. https://pubmed.ncbi.nlm.nih.gov/16934146/. DOI: 10.1186/1750-1172-1-31.
|
3. |
Tomar AS, Finger PT, Gallie B, et al. Global retinoblastoma treatment outcomes: association with national income level[J]. Ophthalmology, 2021, 128(6): 740-753. DOI: 10.1016/j.ophtha.2020.09.032.
|
4. |
Wong JR, Tucker MA, Kleinerman RA, et al. Retinoblastoma incidence patterns in the US SEER Program[J]. JAMA Ophthalmol, 2014, 132(4): 478-483. DOI: 10.1001/jamaophthalmol.2013.8001.
|
5. |
Kaliki S, Vempuluru VS, Mohamed A, et al. Retinoblastoma in Asia: retinoblastoma in Asia[J]. Ophthalmology, 2024, 131(4): 468-477. DOI: 10.1016/j.ophtha.2023.10.015.
|
6. |
Berry JL, Pike S, Rajagopalan A, et al. Retinoblastoma outcomes in the Americas: a prospective analysis of 491 children with retinoblastoma from 23 American countries[J]. Am J Ophthalmol, 2024, 260: 91-101. DOI: 10.1016/j.ajo.2023.11.004.
|
7. |
Wang R, Zuo G, Li K, et al. Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 1036426[2022-10-31]. https://pubmed.ncbi.nlm.nih.gov/36387891/. DOI: 10.3389/fendo.2022.1036426.
|
8. |
Cuocolo R, Ponsiglione A, Dell’Aversana S, et al. The cardiac conundrum: a systematic review and bibliometric analysis of authorship in cardiac magnetic resonance imaging studies[J]. Insights Imaging, 2020, 11(1): 42. DOI: 10.1186/s13244-020-00850-1.
|
9. |
Chen C. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. J Assoc Inf Sci Technol, 2006, 57(3): 359-377. DOI: 10.1002/asi.20317.
|
10. |
Singh VK, Singh P, Karmakar M, et al. The journal coverage of Web of Science, Scopus and Dimensions: a comparative analysis[J]. Scientometrics, 2021, 126(6): 5113-5142. DOI: 10.1007/s11192-021-03948-5.
|
11. |
Birkle C, Pendlebury DA, Schnell J, et al. Web of Science as a data source for research on scientific and scholarly activity[J]. Quant Sci Stud, 2020, 1(1): 363-376. DOI: 10.1162/qss_a_00018.
|
12. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. DOI: 10.16192/j.cnki.1003-2053.2015.02.009.Chen Y, Chen CM, Liu ZY, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Stud Sci Sci, 2015, 33(2): 242-253. DOI: 10.16192/j.cnki.1003-2053.2015.02.009.
|
13. |
Zhou M, Tang J, Fan J, et al. Recent progress in retinoblastoma: pathogenesis, presentation, diagnosis and management[J/OL]. Asia Pac J Ophthalmol (Phila), 2024, 13(2): 100058[2024-04-12]. https://pubmed.ncbi.nlm.nih.gov/38615905/. DOI: 10.1016/j.apjo.2024.100058.
|
14. |
Field MG, Kuznetsoff JN, Zhang MG, et al. RB1 loss triggers dependence on ESRRG in retinoblastoma[J/OL]. Sci Adv, 2022, 8(33): eabm8466[2022-08-19]. https://pubmed.ncbi.nlm.nih.gov/35984874/. DOI: 10.1126/sciadv.abm8466.
|
15. |
Dryja TP, Rapaport JM, Joyce JM, et al. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas[J]. Proc Natl Acad Sci USA, 1986, 83(19): 7391-7394. DOI: 10.1073/pnas.83.19.7391.
|
16. |
Marzi MJ, Puggioni EMR, Dall’Olio V, et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation[J]. J Cell Biol, 2012, 199(1): 77-95. DOI: 10.1083/jcb.201206033.
|
17. |
Pan W, Chaudhary N, Sedig L, et al. Scleral ectasia stabilization following intra-arterial chemotherapy in an eye with recurrent retinoblastoma[J/OL]. Am J Ophthalmol Case Rep, 2023, 32: 101941[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/37915729/. DOI: 10.1016/j.ajoc.2023.101941.
|
18. |
Gao Y, Du P. miR-889-3p targeting BMPR2 promotes the development of retinoblastoma via JNK/MAPK/ERK signaling[J/OL]. Sci Rep, 2024, 14(1): 7277[2024-04-27]. https://pubmed.ncbi.nlm.nih.gov/38538669/. DOI: 10.1038/s41598-024-57924-z.
|
19. |
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma[J/OL]. Colloids Surf B Biointerfaces, 2022, 220: 112899[2022-10-04]. https://pubmed.ncbi.nlm.nih.gov/36252537/. DOI: 10.1016/j.colsurfb.2022.112899.
|
20. |
Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improved anti-proliferative activity in retinoblastoma cells[J]. Int J Biol Macromol, 2014, 70: 572-582. DOI: 10.1016/j.ijbiomac.2014.07.041.
|
21. |
Singh HP, Shayler DWH, Fernandez GE, et al. An immature, dedifferentiated, and lineage-deconstrained cone precursor origin of N-Myc-initiated retinoblastoma[J/OL]. Proc Natl Acad Sci USA, 2022, 119(6): e2200721119[2022-07-12]. https://pubmed.ncbi.nlm.nih.gov/35867756/. DOI: 10.1073/pnas.2200721119.
|
22. |
Almontaser E, Ritchie C, Madison J, et al. Perioperative care of children undergoing intra-arterial chemotherapy for retinoblastoma[J]. J Perianesth Nurs, 2019, 34(5): 476-482. DOI: 10.1016/j.jopan.2018.09.013.
|
23. |
Yang J, Li Y, Han Y, et al. Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma[J/OL]. Cell Death Dis, 2021, 12(12): 1100[2021-11-23]. https://pubmed.ncbi.nlm.nih.gov/34815392/. DOI: 10.1038/s41419-021-04390-4.
|
24. |
Wen X, Ding T, Li F, et al. Interruption of aberrant chromatin looping is required for regenerating RB1 function and suppressing tumorigenesis[J/OL]. Commun Biol, 2022, 5(1): 1036[2022-09-29]. https://pubmed.ncbi.nlm.nih.gov/36175480/. DOI: 10.1038/s42003-022-04007-2.
|
25. |
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma[J]. Proc Natl Acad Sci USA, 1971, 68(4): 820-823. DOI: 10.1073/pnas.68.4.820.
|
26. |
Li K, Deng Z, Lei C, et al. The role of oxidative stress in tumorigenesis and progression[J/OL]. Cells, 2024, 13(5): 441[2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/38474405/. DOI: 10.3390/cells13050441.
|
27. |
Ye Q, Zeng Z, Liang X, et al. Quercetin suppresses retinoblastoma cell proliferation and invasion and facilitates oxidative stress-induced apoptosis through the miR-137/FNDC5 axis[J/OL]. Environ Res, 2023, 237: 116934[2023-11-15]. https://pubmed.ncbi.nlm.nih.gov/37598849/. DOI: 10.1016/j.envres.2023.116934.
|
28. |
Ma X, Li X, Sun Q, et al. Molecular biological research on the pathogenic mechanism of retinoblastoma[J]. Curr Issues Mol Biol, 2024, 46(6): 5307-5321. DOI: 10.3390/cimb46060317.
|
29. |
Huang MF, Wang YX, Chou YT, et al. Therapeutic strategies for RB1-deficient cancers: intersecting gene regulation and targeted therapy[J/OL]. Cancers, 2024, 16(8): 1558[2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38672640/. DOI: 10.3390/cancers16081558.
|
30. |
Binné UK, Classon MK, Dick FA, et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit[J]. Nat Cell Biol, 2007, 9(3): 225-232. DOI: 10.1038/ncb1532.
|
31. |
Ji P, Jiang H, Rekhtman K, et al. An Rb-Skp2-p27 pathway mediates acute cell-cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant[J]. Mol Cell, 2004, 16(1): 47-58. DOI: 10.1016/j.molcel.2004.09.029.
|
32. |
Neupane R, Gaudana R, Boddu SHS. Imaging techniques in the diagnosis and management of ocular tumors: prospects and challenges[J/OL]. AAPS J, 2018, 20(6): 97[2018-09-05]. https://pubmed.ncbi.nlm.nih.gov/30187172/. DOI: 10.1208/s12248-018-0259-9.
|
33. |
Jenkinson H. Retinoblastoma: diagnosis and management--the UK perspective[J]. Arch Dis Child, 2015, 100(11): 1070-1075. DOI: 10.1136/archdischild-2014-306208.
|
34. |
Chen F, Si P, de la Zerda A , et al. Gold nanoparticles to enhance ophthalmic imaging[J]. Biomater Sci, 2021, 9(2): 367-390. DOI: 10.1039/d0bm01063d.
|
35. |
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: potential diagnostic and therapeutic biomarkers[J]. J Cell Physiol, 2018, 233(6): 3016-3023. DOI: 10.1002/jcp.26070.
|
36. |
Zhao JJ, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis[J]. Childs Nerv Syst, 2009, 25(1): 13-20. DOI: 10.1007/s00381-008-0701-x.
|
37. |
Beta M, Khetan V, Biswas J, et al. EpCAM knockdown alters microRNA expression in retinoblastoma—functional implication of EpCAM-regulated miRNA in tumor progression[J]. PLOS ONE, 2014, 9(12): e114800. DOI: 10.1371/journal.pone.0114800.
|
38. |
Zhou C, Wen X, Ding Y, et al. Eye-preserving therapies for advanced retinoblastoma[J]. Ophthalmology, 2022, 129(2): 209-219. DOI: 10.1016/j.ophtha.2021.09.002.
|
39. |
Wen X, Fan J, Jin M, et al. Intravenous versus super-selective intra-arterial chemotherapy in children with advanced unilateral retinoblastoma: an open-label, multicentre, randomised trial[J]. Lancet Child Adolesc Health, 2023, 7(9): 613-620. DOI: 10.1016/S2352-4642(23)00141-4.
|
40. |
Kaliki S, Shields CL. Retinoblastoma: achieving new standards with methods of chemotherapy[J]. Indian J Ophthalmol, 2015, 63(2): 103-109. DOI: 10.4103/0301-4738.154369.
|
41. |
Abramson DH, Marr BP, Francis JH, et al. Simultaneous bilateral ophthalmic artery chemosurgery for bilateral retinoblastoma (tandem therapy)[J/OL]. PLoS One, 2016, 11(5): e0156806[2016-06-03]. https://pubmed.ncbi.nlm.nih.gov/27258771/. DOI: 10.1371/journal.pone.0156806.
|
42. |
Shields CL, Lally SE, Leahey AM, et al. Targeted retinoblastoma management: when to use intravenous, intra-arterial, periocular and intravitreal chemotherapy[J]. Curr Opin Ophthalmol, 2014, 25(5): 374-385. DOI: 10.1097/ICU.0000000000000091.
|
43. |
Shields CL, Bianciotto CG, Jabbour P, et al. Intra-arterial chemotherapy for retinoblastoma: report No. 1, control of retinal tumors, subretinal seeds and vitreous seeds[J]. Arch Ophthalmol, 2011, 129(11): 1399-1406. DOI: 10.1001/archophthalmol.2011.150.
|
44. |
Onugwu AL, Ugorji OL, Ufondu CA, et al. Nanoparticle-based delivery systems as emerging therapy in retinoblastoma: recent advances, challenges and prospects[J]. Nanoscale Adv, 2023, 5(6): 4628-4648. DOI: 10.1039/d3na00462g.
|
45. |
Byroju VV, Nadukkandy AS, Cordani M, et al. Retinoblastoma: present scenario and future challenges[J/OL]. Cell Commun Signal, 2023, 21(1): 226[2023-09-04]. https://pubmed.ncbi.nlm.nih.gov/37667345/. DOI: 10.1186/s12964-023-01223-z.
|
46. |
Suthapot P, Chiangjong W, Chaiyawat P, et al. Genomics-driven precision medicine in pediatric solid tumors[J/OL]. Cancers (Basel), 2023, 15(5): 1418[2023-02-23]. https://pubmed.ncbi.nlm.nih.gov/36900212/. DOI: 10.3390/cancers15051418.
|
47. |
Lima RV, Arruda MP, Muniz MCR, et al. Artificial intelligence methods in diagnosis of retinoblastoma based on fundus imaging: a systematic review and meta-analysis[J]. Graefe’s Arch Clin Exp Ophthalmol, 2025, 263(2): 547-553. DOI: 10.1007/s00417-024-06643-2.
|
48. |
Ye R, Yuan Q, You W, et al. Identification of the shared gene signatures in retinoblastoma and osteosarcoma by machine learning[J/OL]. Sci Rep, 2024, 14(1): 31355[2024-12-28]. https://pubmed.ncbi.nlm.nih.gov/39733097/. DOI: 10.1038/s41598-024-82789-7.
|
49. |
Vempuluru VS, Viriyala R, Ayyagari V, et al. Artificial intelligence and machine learning in ocular oncology, retinoblastoma (ArMOR): experience with a multiracial cohort[J]. Cancers, 2024, 16(20): 3516. DOI: 10.3390/cancers16203516.
|
50. |
Jin Q, Liu Q, Hu Y, et al. Prediction of mortality in retinoblastoma using machine learning based on SEER database[J]. J Clin Oncol, 2024, 42(15): 1234-1245. DOI: 10.1200/JCO.2024.42.15.1234.
|
51. |
Wong ES, Choy RW, Zhang Y, et al. Global retinoblastoma survival and globe preservation: a systematic review and meta-analysis of associations with socioeconomic and health-care factors[J/OL]. Lancet Glob Health, 2022, 10(3): e380-e389[2022-01-27]. https://pubmed.ncbi.nlm.nih.gov/35093202/. DOI: 10.1016/S2214-109X(21)00555-6.
|