1. |
Lang GE, Enders C, Loidl M, et al. Accurate OCT-angiography interpretation-detection and exclusion of artifacts[J]. Klin Monbl Augenheilkd, 2017, 234(9): 1109-1118. DOI: 10.1055/s-0043-112857.
|
2. |
Lauermann JL, Woetzel AK, Treder M, et al. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(10): 1807-1816. DOI: 10.1007/s00417-018-4053-2.
|
3. |
Stefan WH, Robert NW. High resolution imaging in microscopy and ophthalmology[M]//Rocholz R, Corvi F, Weichsel J, et al. OCT angiography in retinal diagnostics. Cham: Springer, 2019: 135-160.
|
4. |
Makita S, Hong Y, Yamanari M, et al. Optical coherence angiography[J]. Opt Express, 2006, 14(17): 7821-7840. DOI: 10.1364/oe.14.007821.
|
5. |
Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180. DOI: 10.1097/IAE.0000000000000765.
|
6. |
Koutsiaris AG, Batis V, Liakopoulou G, et al. Optical coherence tomography angiography (OCTA) of the eye: a review on basic principles, advantages, disadvantages and device specifications[J]. Clin Hemorheol Microcirc, 2023, 83(3): 247-271. DOI: 10.3233/CH-221634.
|
7. |
Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases[J]. Surv Ophthalmol, 2017, 62(6): 838-866. DOI: 10.1016/j.survophthal.2017.05.006.
|
8. |
Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180. DOI: 10.1097/IAE.0000000000000765.
|
9. |
Wang XN, Li S, Cai X, et al. Imaging artifacts and quality evaluation with ultrawide-field swept-source octa in diabetic retinopathy[J]. Curr Eye Res, 2023, 49(4): 410-416. DOI: 10.1080/02713683.2023.2296362.
|
10. |
Cui Y, Zhu Y, Wang JC, et al. Imaging artifacts and segmentation errors with wide-field swept-source optical coherence tomography angiography in diabetic retinopathy[J/OL]. Transl Vis Sci Technol, 2019, 8(6): 18[2019-11-15]. https://pubmed.ncbi.nlm.nih.gov/31772829/. DOI: 10.1167/tvst.8.6.18.
|
11. |
Ricco S, Chen M, Ishikawa H, et al. Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration[J]. Med Image Comput Comput Assist Interv, 2009, 12(Pt 1): 100-107. DOI: 10.1007/978-3-642-04268-3_13.
|
12. |
Hormel TT, Huang D, Jia Y. Artifacts and artifact removal in optical coherence tomographic angiography[J]. Quant Imaging Med Surg, 2021, 11(3): 1120-1133. DOI: 10.21037/qims-20-730.
|
13. |
Kolb JP, Klein T, Kufner CL, et al. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle[J]. Biomed Opt Express, 2015, 6(5): 1534-1552. DOI: 10.1364/BOE.6.001534.
|
14. |
Guo Y, Hormel TT, Xiong H, et al. Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography[J]. Biomed Opt Express, 2019, 10(7): 3257-3268. DOI: 10.1364/BOE.10.003257.
|
15. |
董艳娟, 左桂金, 王苏. 老年人瞬目反射的测定和分析[J]. 中华老年医学杂志, 2000, 19(6): 422-424. DOI: 10.3760/j:issn:0254-9026.2000.06.006.Dong YJ, Zuo GZ, Wang S. Measurement and analysis of the blink reflex in the elderly[J]. Chin J Geriatr, 2000, 19(6): 422-424. DOI: 10.3760/j:issn:0254-9026.2000.06.006.
|
16. |
孙晋夫, 余慧敏, 孙旭芳. 光学相干断层扫描血管成像中伪影的研究进展[J]. 眼科新进展, 2021, 41(1): 79-83. DOI: 10.13389/j.cnki.rao.2021.0017.Sun JF, Yu HM, Sun XF. Research progress on artifacts in optical coherence tomography angiography[J]. Rec Adv Ophthalmol, 2021, 41(1): 79-83. DOI: 10.13389/j.cnki.rao.2021.0017.
|
17. |
Reich M, Boehringer D, Rothaus K, et al. Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid[J]. Int Ophthalmol, 2020, 40(8): 2007-2016. DOI: 10.1007/s10792-020-01376-7.
|
18. |
Sakini ASA, Hamid AK, Alkhuzaie ZA, et al. Diabetic macular edema (DME): dissecting pathogenesis, prognostication, diagnostic modalities along with current and futuristic therapeutic insights[J/OL]. Int J Retina Vitreous, 2024, 10(1): 83[2024-10-28]. https://pubmed.ncbi.nlm.nih.gov/39468614/. DOI: 10.1186/s40942-024-00603-y.
|
19. |
Camino A, Jia Y, Yu J, et al. Automated detection of shadow artifacts in optical coherence tomography angiography[J]. Biomed Opt Express, 2019, 10(3): 1514-1531. DOI: 10.1364/BOE.10.001514.
|
20. |
Onishi AC, Ashraf M, Soetikno BT, et al. Multilevel ischemia in disorganization of the retinal inner layers on projection-resolved optical coherence tomography angiography[J]. Retina, 2019, 39(8): 1588-1594. DOI: 10.1097/IAE.0000000000002179.
|
21. |
Zhang W, He B, Wu Y, et al. Tail artifacts removal of three-dimensional optical coherence tomography angiography with common parts extraction method[J/OL]. J Biophotonics, 2022, 15(11): e202200155[2022-08-18]. https://pubmed.ncbi.nlm.nih.gov/36328058/. DOI: 10.1002/jbio.202200155.
|
22. |
Choi WJ, Paulson B, Yu S, et al. Mean-subtraction method for de-shadowing of tail artifacts in cerebral octa images: a proof of concept[J/OL]. Materials (Basel), 2020, 13(9): 2024[2020-04-26]. https://pubmed.ncbi.nlm.nih.gov/32357466/. DOI: 10.3390/ma13092024.
|
23. |
Li Y, Tang J. Blood vessel tail artifacts suppression in optical coherence tomography angiography[J/OL]. Neurophotonics, 2022, 9(2): 021906[2022-01-24]. https://pubmed.ncbi.nlm.nih.gov/35106321/. DOI: 10.1117/1.NPh.9.2.021906.
|
24. |
Zhang Q, Zhang A, Lee CS, et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography[J]. Ophthalmol Retina, 2017, 1(2): 124-136. DOI: 10.1016/j.oret.2016.08.005.
|
25. |
Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J/OL]. Proc Natl Acad Sci USA, 2015, 112(18): E2395-2402[2015-05-05]. https://pubmed.ncbi.nlm.nih.gov/25897021/. DOI: 10.1073/pnas.1500185112.
|
26. |
Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2014, 121(7): 1435-1444. DOI: 10.1016/j.ophtha.2014.01.034.
|
27. |
Zhang Q, Zhang A, Lee CS, et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography[J]. Ophthalmol Retina, 2017, 1(2): 124-136. DOI: 10.1016/j.oret.2016.08.005.
|
28. |
Simoncic U, Milanic M. Tail artifact removal via transmittance effect subtraction in optical coherence tail artifact images[J/OL]. Sensors (Basel), 2023, 23(23): 9312[2023-11-21]. https://pubmed.ncbi.nlm.nih.gov/38067685/. DOI: 10.3390/s23239312.
|
29. |
Holmen IC, Konda SM, Pak JW, et al. Prevalence and severity of artifacts in optical coherence tomographic angiograms[J]. JAMA Ophthalmol, 2020, 138(2): 119-126. DOI: 10.1001/jamaophthalmol.2019.4971.
|
30. |
Kim JJ. Revisiting the removable partial denture[J]. Dent Clin North Am, 2019, 63(2): 263-278. DOI: 10.1016/j.cden.2018.11.007.
|
31. |
Lauermann JL, Woetzel AK, Treder M, et al. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(10): 1807-1816. DOI: 10.1007/s00417-018-4053-2.
|
32. |
Lauermann JL, Treder M, Heiduschka P, et al. Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(8): 1535-1542. DOI: 10.1007/s00417-017-3684-z.
|
33. |
Baghaie A, Yu Z, D'Souza RM. Involuntary eye motion correction in retinal optical coherence tomography: hardware or software solution?[J]. Med Image Anal, 2017, 37: 129-145. DOI: 10.1016/j.media.2017.02.002.
|
34. |
Vienola KV, Braaf B, Sheehy CK, , et al. Real-time eye motion compensation for OCT imaging with tracking SLO[J]. Biomed Opt Express, 2012, 3(11): 2950-2963. DOI: 10.1364/BOE.3.002950.
|
35. |
Camino A, Zhang M, Gao SS, et al. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology[J]. Biomed Opt Express, 2016, 7(10): 3905-3915. DOI: 10.1364/BOE.7.003905.
|
36. |
Braaf B, Vienola KV, Sheehy CK, et al. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO[J]. Biomed Opt Express, 2013, 4(1): 51-65. DOI: 10.1364/BOE.4.000051.
|
37. |
Ferguson RD, Hammer DX, Paunescu LA, et al. Tracking optical coherence tomography[J]. Opt Lett, 2004, 29(18): 2139-2141. DOI: 10.1364/ol.29.002139.
|
38. |
Zhang Q, Huang Y, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking[J/OL]. J Biomed Opt, 2015, 20(6): 066008[2015-06-01]. https://pubmed.ncbi.nlm.nih.gov/26102573/. DOI: 10.1117/1.JBO.20.6.066008.
|
39. |
Say EAT, Ferenczy S, Magrath GN, et al. Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque[J]. Retina, 2017, 37(9): 1660-1673. DOI: 10.1097/IAE.0000000000001414.
|
40. |
Li A, You J, Du C, et al. Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression[J]. Biomed Opt Express, 2017, 8(12): 5604-5616. DOI: 10.1364/BOE.8.005604.
|
41. |
Lauermann JL, Treder M, Alnawaiseh M, et al. Automated OCT angiography image quality assessment using a deep learning algorithm[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(8): 1641-1648. DOI: 10.1007/s00417-019-04338-7.
|
42. |
Arya M, Sorour O, Chaudhri J, et al. Distinguishing intraretinal microvascular abnormalities from retinal neovascularization using optical coherence tomography angiography[J]. Retina, 2020, 40(9): 1686-1695. DOI: 10.1097/IAE.0000000000002671.
|
43. |
董文韬, 刘三梅, 李杰, 等. 增生早期糖尿病视网膜病变患者视网膜及视盘新生血管的超广角OCTA与FFA检测结果对比分析[J]. 眼科新进展, 2023, 43(4): 294-297. DOI: 10.13389/j.cnki.rao.2023.0060.Dong WT, Liu SM, Li J, et al. Comparison of the detection of retinal and optic disc neovascularization in patients with early-stage proliferative diabetic retinopathy by ultra-wide op-tical coherence tomography angiography and fundus fluorescein angiography[J]. Rec Adv Ophthalmol, 2023, 43(4): 294-297. DOI: 10.13389/j.cnki.rao.2023.0060.
|