1. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
|
2. |
Madjedi K, Pereira A, Ballios BG, et al. Switching between anti-VEGF agents in the management of refractory diabetic macular edema: a systematic review[J]. Surv Ophthalmol, 2022, 67(5): 1364-1372. DOI: 10.1016/j.survophthal.2022.04.001.
|
3. |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J/OL]. Front Immunol, 2020, 11: 564077[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33240260/. DOI: 10.3389/fimmu.2020.564077.
|
4. |
Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50. DOI: 10.2478/v10153-010-0036-8.
|
5. |
Kowluru RA. Diabetic retinopathy and NADPH oxidase-2: a sweet slippery road[J/OL]. Antioxidants (Basel), 2021, 10(5): 783[2021-50-15]. https://pubmed.ncbi.nlm.nih.gov/34063353/. DOI: 10.3390/antiox10050783.
|
6. |
Pan X, Tan X, McDonald J, et al. Chemokines in diabetic eye disease[J/OL]. Diabetol Metab Syndr, 2024, 16(1): 115[2024-05-24]. https://pubmed.ncbi.nlm.nih.gov/38790059/. DOI: 10.1186/s13098-024-01297-w.
|
7. |
Li X, Zhang Y, Zhang Y, et al. CD8+ T cells promote pathological angiogenesis in ocular neovascular diseases[J]. J Immunol, 2022, 208(5): 1234-1245. DOI: 10.4049/jimmunol.2101234.
|
8. |
McPherson SW, Yang J, Chan CC, et al. Resting CD8 T cells recognize beta-galactosidase expressed in the immune-privileged retina and mediate autoimmune disease when activated[J]. Immunology, 2003, 110(3): 386-396. DOI: 10.1046/j.1365-2567.2003.01750.x.
|
9. |
Liu Y, Yang Z, Lai P, et al. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy[J]. Theranostics, 2020, 10(9): 4250-4264. DOI: 10.7150/thno.43731.
|
10. |
Yu H, Liu B, Wu G, et al. Dysregulation of circulating follicular helper T cells in type 2 diabetic patients with diabetic retinopathy[J]. Immunol Res, 2021, 69(2): 153-161. DOI: 10.1007/s12026-021-09182-8.
|
11. |
Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, et al. Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose[J]. Immunol Lett, 2016, 176: 81-89. DOI: 10.1016/j.imlet.2016.06.001.
|
12. |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448.
|
13. |
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J/OL]. F1000Prime Rep, 2014, 6: 13[2014-03-03]. https://pubmed.ncbi.nlm.nih.gov/24669294/. DOI: 10.12703/P6-13.
|
14. |
Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013, 229(2): 176-185. DOI: 10.1002/path.4133.
|
15. |
Meng Z, Chen Y, Wu W, et al. Exploring the immune infiltration landscape and M2 macrophage-related biomarkers of proliferative diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 841813[2022-05-27]. https://pubmed.ncbi.nlm.nih.gov/35692390/. DOI: 10.3389/fendo.2022.841813.
|
16. |
Zhu Y, Xia X, He Q, et al. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1202463[2023-08-03]. https://pubmed.ncbi.nlm.nih.gov/37600700/. DOI: 10.3389/fendo.2023.1202463.
|
17. |
Gui F, You Z, Fu S, et al. Endothelial dysfunction in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2020, 11: 591[2020-09-04]. https://pubmed.ncbi.nlm.nih.gov/33013692/. DOI: 10.3389/fendo.2020.00591.
|
18. |
Liang WJ, Yang HW, Liu HN, et al. HMGB1 upregulates NF-kB by inhibiting IKB-α and associates with diabetic retinopathy[J/OL]. Life Sci, 2020, 241: 117146[2020-01-15]. https://pubmed.ncbi.nlm.nih.gov/31816325/. DOI: 10.1016/j.lfs.2019.117146.
|
19. |
Liu H, Ghosh S, Vaidya T, et al. Activated cGAS/STING signaling elicits endothelial cell senescence in early diabetic retinopathy[J/OL]. JCI Insight, 2023, 8(12): e168945[2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/37345657/. DOI: 10.1172/jci.insight.168945.
|
20. |
Yao X, Zhao Z, Zhang W, et al. Specialized retinal endothelial cells modulate blood-retina barrier in diabetic retinopathy[J]. Diabetes, 2024, 73(2): 225-236. DOI: 10.2337/db23-0368.
|
21. |
Hammes HP, Lin J, Renner O, et al. Pericytes and the pathogenesis of diabetic retinopathy[J]. Diabetes, 2002, 51(10): 3107-3112. DOI: 10.2337/diabetes.51.10.3107.
|
22. |
Dharmarajan S, Carrillo C, Qi Z, et al. Retinal inflammation in murine models of type 1 and type 2 diabetes with diabetic retinopathy[J]. Diabetologia, 2023, 66(11): 2170-2185. DOI: 10.1007/s00125-023-05995-4.
|
23. |
van Splunder H, Villacampa P, Martínez-Romero A, et al. Pericytes in the disease spotlight[J]. Trends Cell Biol, 2024, 34(1): 58-71. DOI: 10.1016/j.tcb.2023.06.001.
|
24. |
Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy[J]. Biochim Biophys Acta, 2015, 1852(11): 2474-2483. DOI: 10.1016/j.bbadis.2015.08.001.
|
25. |
Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976-982. DOI: 10.4103/1673-5374.355743.
|
26. |
Wang M, Ma W, Zhao L, et al. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina[J/OL]. J Neuroinflammation, 2011, 8: 173[2011-12-07]. https://pubmed.ncbi.nlm.nih.gov/22152278/. DOI: 10.1186/1742-2094-8-173.
|
27. |
Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy[J]. Biochem Biophys Res Commun, 2021, 561: 143-150. DOI: 10.1016/j.bbrc.2021.05.027.
|
28. |
Yang S, Qi S, Wang C. The role of retinal Müller cells in diabetic retinopathy and related therapeutic advances[J/OL]. Front Cell Dev Biol, 2022, 10: 1047487[2022-12-02]. https://pubmed.ncbi.nlm.nih.gov/36531955/. DOI: 10.3389/fcell.2022.1047487.
|
29. |
Yao Y, Li J, Zhou Y, et al. Macrophage/microglial polarization for the treatment of diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1276225[2023-09-28]. https://pubmed.ncbi.nlm.nih.gov/37842315/. DOI: 10.3389/fendo.2023.1276225.
|
30. |
Mei X, Zhou L, Zhang T, et al. Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis[J]. Vascul Pharmacol, 2018, 101: 29-37. DOI: 10.1016/j.vph.2017.11.002.
|
31. |
Demircan N, Safran BG, Soylu M, et al. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy[J]. Eye (Lond), 2006, 20(12): 1366-1369. DOI: 10.1038/sj.eye.6702138.
|
32. |
Johnsen-Soriano S, Sancho-Tello M, Arnal E, et al. IL-2 and IFN-gamma in the retina of diabetic rats[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(7): 985-990. DOI: 10.1007/s00417-009-1289-x.
|
33. |
Chung YR, Kim YH, Ha SJ, et al. Role of inflammation in classification of diabetic macular edema by optical coherence tomography[J/OL]. J Diabetes Res, 2019, 2019: 8164250[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31930145/. DOI: 10.1155/2019/8164250.
|
34. |
Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions[J]. Int J Biol Sci, 2013, 9(9): 966-979. DOI: 10.7150/ijbs.6996.
|
35. |
Silvestre JS, Mallat Z, Duriez M, et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb[J]. Circ Res, 2000, 87(6): 448-452. DOI: 10.1161/01.res.87.6.448.
|
36. |
Behl Y, Krothapalli P, Desta T, et al. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy[J]. Am J Pathol, 2008, 172(5): 1411-1418. DOI: 10.2353/ajpath.2008.071070.
|
37. |
Ishida S, Usui T, Yamashiro K, et al. VEGF164 is proinflammatory in the diabetic retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(5): 2155-2162. DOI: 10.1167/iovs.02-0807.
|
38. |
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305. DOI: 10.2337/db09-1420.
|
39. |
Huang H, He J, Johnson D, et al. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition[J]. Diabetes, 2015, 64(1): 200-212. DOI: 10.2337/db14-0016.
|
40. |
Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation[J]. Nat Med, 2006, 12(2): 235-239. DOI: 10.1038/nm1351.
|
41. |
Murugeswari P, Shukla D, Rajendran A, et al. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and Eales' disease[J]. Retina, 2008, 28(6): 817-824. DOI: 10.1097/IAE.0b013e31816576d5.
|
42. |
Calderon GD, Juarez OH, Hernandez GE, et al. Oxidative stress and diabetic retinopathy: development and treatment[J]. Eye (Lond), 2017, 31(8): 1122-1130. DOI: 10.1038/eye.2017.64.
|
43. |
Abu El-Asrar AM, Desmet S, Meersschaert A, et al. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus[J]. Am J Ophthalmol, 2001, 132(4): 551-556. DOI: 10.1016/s0002-9394(01)01127-8.
|
44. |
Yang D, Elner SG, Bian ZM, et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells[J]. Exp Eye Res, 2007, 85(4): 462-472. DOI: 10.1016/j.exer.2007.06.013.
|
45. |
Grau GE, Thompson MB, Murphy CR. VEGF: inflammatory paradoxes[J]. Pathog Glob Health, 2015, 109(6): 253-254. DOI: 10.1179/2047772415Z.000000000271.
|
46. |
Tang X, Yang Y, Yuan H, et al. Novel transcriptional regulation of VEGF in inflammatory processes[J]. J Cell Mol Med, 2013, 17(3): 386-397. DOI: 10.1111/jcmm.12020.
|
47. |
Shibuya M. VEGF-VEGFR system as a target for suppressing inflammation and other diseases[J]. Endocr Metab Immune Disord Drug Targets, 2015, 15(2): 135-144. DOI: 10.2174/1871530315666150316121956.
|
48. |
Yoda-Murakami M, Taniguchi M, Takahashi K, et al. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver[J]. Biochem Biophys Res Commun, 2001, 285(2): 372-377. DOI: 10.1006/bbrc.2001.5134.
|
49. |
Bushra S, Al-Sadeq DW, Bari R, et al. Adiponectin ameliorates hyperglycemia-induced retinal endothelial dysfunction, highlighting pathways, regulators, and networks[J]. J Inflamm Res, 2022, 15: 3135-3166. DOI: 10.2147/JIR.S358594.
|
50. |
Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan[J]. Nutr Rev, 2014, 72(9): 605-612. DOI: 10.1111/nure.12133.
|
51. |
Li SY, Fung FK, Fu ZJ, et al. Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 5976-5984. DOI: 10.1167/iovs.12-10007.
|
52. |
Kowluru RA, Kanwar M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes[J/OL]. Nutr Metab (Lond), 2007, 4: 8[2007-04-16]. https://pubmed.ncbi.nlm.nih.gov/17437639/. DOI: 10.1186/1743-7075-4-8.
|