1. |
余蓉, 贾伟平. 神经血管单元障碍在糖尿病视网膜病变发病机制中的作用[J]. 中华内科杂志, 2023, 62(4): 460-464. DOI: 10.3760/cma.j.cn112138-20220615-00451.Yu R, Jia WP. Disorders of neurovascular unit in the pathogenesis of diabetic retinopathy[J]. Chin J Intern Med, 2023, 62(4): 460-464. DOI: 10.3760/cma.j.cn112138-20220615-00451.
|
2. |
Bollmann L, Koser DE, Shahapure R, et al. Microglia mechanics: immune activation alters traction forces and durotaxis[J/OL]. Front Cell Neurosci, 2015, 9: 363[2015-09-23]. https://pubmed.ncbi.nlm.nih.gov/26441534/. DOI: 10.3389/fncel.2015.00363.
|
3. |
Ferrara M, Lugano G, Sandinha MT, et al. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance[J]. Eye (Lond), 2021, 35(7): 1818-1832. DOI: 10.1038/s41433-021-01437-w.
|
4. |
Franze K, Francke M, Günter K, et al. Spatial mapping of the mechanical properties of the living retina using scanning force microscopy[J]. Soft Matter, 2011, 7(7): 3147-3154. DOI: 10.1039/C0SM01017K.
|
5. |
Dudiki T, Meller J, Mahajan G, et al. Microglia control vascular architecture via a TGFβ1 dependent paracrine mechanism linked to tissue mechanics[J/OL]. Nat Commun, 2020, 11(1): 986[2020-02-20]. https://pubmed.ncbi.nlm.nih.gov/32080187/. DOI: 10.1038/s41467-020-14787-y.
|
6. |
Dimitrova G, Chihara E, Takahashi H, et al. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 190-196. DOI: 10.1167/iovs.16-20531.
|
7. |
周钢. 我国正常人眼动脉和视网膜中央动脉血流改变的meta分析[J]. 国际眼科杂志, 2007, 7(1): 95-99. DOI: 10.3969/j.issn.1672-5123.2007.01.028.Zhou G. Meta-analysis of hemodynamic characteristics in ocular artery and central retinal artery of Chinese normal people[J]. Int J Ophthalmol, 2007, 7(1): 95-99. DOI: 10.3969/j.issn.1672-5123.2007.01.028.
|
8. |
Tripathy KC, Siddharth A, Bhandari A. Image-based insilico investigation of hemodynamics and biomechanics in healthy and diabetic human retinas[J/OL]. Microvasc Res, 2023, 150: 104594[2023-08-12]. https://pubmed.ncbi.nlm.nih.gov/37579814/. DOI: 10.1016/j.mvr.2023.104594.
|
9. |
To M, Goz A, Camenzind L, et al. Diabetes-induced morphological, biomechanical, and compositional changes in ocular basement membranes[J]. Exp Eye Res, 2013, 116: 298-307. DOI: 10.1016/j.exer.2013.09.011.
|
10. |
Terai N, Spoerl E, Haustein M, et al. Diabetes mellitus affects biomechanical properties of the optic nerve head in the rat[J]. Ophthalmic Res, 2012, 47(4): 189-194. DOI: 10.1159/000331990.
|
11. |
Chen K, Weiland JD. Discovery of retinal elastin and its possible role in age-related macular degeneration[J]. Ann Biomed Eng, 2014, 42(3): 678-684. DOI: 10.1007/s10439-013-0936-x.
|
12. |
Okumura N, Minamiyama R, Ho LT, et al. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy[J]. Lab Invest, 2015, 95(11): 1291-1304. DOI: 10.1038/labinvest.2015.111.
|
13. |
Franze K, Gerdelmann J, Weick M, et al. Neurite branch retraction is caused by a threshold-dependent mechanical impact[J]. Biophys J, 2009, 97(7): 1883-1890. DOI: 10.1016/j.bpj.2009.07.033.
|
14. |
Gaub BM, Kasuba KC, Mace E, et al. Neurons differentiate magnitude and location of mechanical stimuli[J]. Proc Natl Acad Sci USA, 2020, 117(2): 848-856. DOI: 10.1073/pnas.1909933117.
|
15. |
Guo Y, Mei F, Huang Y, et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis[J]. Bioact Mater, 2022, 7: 364-376. DOI: 10.1016/j.bioactmat.2021.05.033.
|
16. |
Molins B, Mora A, Romero-Vázquez S, et al. Shear stress modulates inner blood retinal barrier phenotype[J/OL]. Exp Eye Res, 2019, 187: 107751[2019-08-05]. https://pubmed.ncbi.nlm.nih.gov/31394104/. DOI: 10.1016/j.exer.2019.107751.
|
17. |
Walsh TG, Murphy RP, Fitzpatrick P, et al. Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels[J]. J Cell Physiol, 2011, 226(11): 3053-3063. DOI: 10.1002/jcp.22655.
|
18. |
Pannicke T, Wurm A, Iandiev I, et al. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress[J]. J Neurosci Res, 2010, 88(13): 2877-2888. DOI: 10.1002/jnr.22437.
|
19. |
O'Sullivan ML, Puñal VM, Kerstein PC, et al. Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development[J]. Glia, 2017, 65(10): 1697-1716. DOI: 10.1002/glia.23189.
|
20. |
Hu Y, Huang G, Tian J, et al. Matrix stiffness changes affect astrocyte phenotype in an in vitro injury model[J]. NPG Asia Materials, 2021, 13(1): 35-50. DOI: 10.1038/s41427-021-00304-0.
|
21. |
Gomez-Cruz C, Fernandez-de la Torre M, Lachowski D, et al. Mechanical and functional responses in astrocytes under alternating deformation modes using magneto-active substrates[J/OL]. Adv Mater, 2024, 36(26): e2312497[2024-04-21]. https://pubmed.ncbi.nlm.nih.gov/38610101/. DOI: 10.1002/adma.202312497.
|
22. |
Liu Y, Zhang J, Li Y, et al. Matrix stiffness-dependent microglia activation in response to inflammatory cues: in situ investigation by scanning electrochemical microscopy[J]. Chem Sci, 2023, 15(1): 171-184. DOI: 10.1039/d3sc03504b.
|
23. |
Schwager SC, Taufalele PV, Reinhart-King CA. Cell–cell mechanical communication in cancer[J]. Cell Mol Bioeng, 2019, 12(1): 1-14. DOI: 10.1007/s12195-018-00564-x.
|
24. |
Mathur J, Shenoy V, Pathak A, Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity[J]. bioRxiv, 2020. DOI: 10.1101/2020.03.20.000802.(需替换文献).Mathur J, Shenoy V, Pathak A, Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity[J]. bioRxiv, 2020. DOI: 10.1101/2020.03.20.000802.(需替换文献).
|
25. |
张颖, 王钰岚, 王楷群, 等. 基质刚度调节细胞-细胞外基质间黏附对肿瘤细胞迁移影响的模型研究[J]. 医用生物力学, 36(4): 604-611. DOI: 10.16156/j.1004-7220.2021.04.016.Zhang Y, Wang YL, Wang KQ, et al. Modeling study on the effect of matrix stiffness-regulated cell-extracellular matrix adhesion on tumor cell migration[J]. J Med Biomech, 2021, 36(4): 604-611. DOI: 10.16156/j.1004-7220.2021.04.016.
|
26. |
Zhou J, Li YS, Wang KC, et al. Epigenetic mechanism in regulation of endothelial function by disturbed flow: induction of DNA hypermethylation by DNMT1[J]. Cell Mol Bioeng, 2014, 7(2): 218-224. DOI: 10.1007/s12195-014-0325-z.
|
27. |
Chen Z, Liu B, Zhou D, et al. AQP4 regulates ferroptosis and oxidative stress of Muller cells in diabetic retinopathy by regulating TRPV4[J/OL]. Exp Cell Res, 2024, 439(1): 114087[2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/38735619/. DOI: 10.1016/j.yexcr.2024.114087.
|
28. |
Harraz OF, Klug NR, Senatore AJ, et al. Piezo1 is a Mechanosensor channel in central nervous system capillaries[J]. Circ Res, 2022, 130(10): 1531-1546. DOI: 10.1161/circresaha.122.320827.
|
29. |
Lai A, Zhou Y, Thurgood P, et al. Endothelial response to the combined biomechanics of vessel stiffness and shear stress is regulated via piezo1[J/OL]. ACS Appl Mater Interfaces, 2023, 15(51): 59103-59116[2023-12-11]. https://pubmed.ncbi.nlm.nih.gov/38073418/. DOI: 10.1021/acsami.3c07756.
|
30. |
Toma K, Zhao M, Zhang S, et al. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact[J]. Cell, 2024, 187(11): 2767-2784. DOI: 10.1016/j.cell.2024.04.010.
|
31. |
Xie Z, Wu XJ, Cheng RW, et al. JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice[J]. Acta Pharmacol Sin, 2023, 44(4): 897-912. DOI: 10.1038/s41401-022-01005-2.
|
32. |
Deng H, Min E, Baeyens N, et al. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling[J/OL]. Proc Natl Acad Sci USA, 2021, 118(37): e2105339118[2021-09-14]. https://pubmed.ncbi.nlm.nih.gov/34504019/. DOI: 10.1073/pnas.2105339118.
|
33. |
Mohajan S, Jaiswal PK, Vatanmakarian M, et al. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer[J]. Cancer Lett, 2021, 507: 112-123. DOI: 10.1016/j.canlet.2021.03.006.
|
34. |
Wei L, Gao J, Wang L, et al. Hippo/YAP signaling pathway: a new therapeutic target for diabetes mellitus and vascular complications[J/OL]. Ther Adv Endocrinol Metab, 2023, 14: 20420188231220134[2023-12-25]. https://pubmed.ncbi.nlm.nih.gov/38152659/. DOI: 10.1177/20420188231220134.
|
35. |
Lu QY, Chen W, Lu L, et al. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy[J]. Int J Clin Exp Pathol, 2014, 7(10): 7268-7277.
|
36. |
Kita T, Hata Y, Arita R, et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target[J]. Proc Natl Acad Sci USA, 2008, 105(45): 17504-17509. DOI: 10.1073/pnas.0804054105.
|
37. |
Rothschild PR, Salah S, Berdugo M, et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: contribution to diabetic retinopathy[J/OL]. Sci Rep, 2017, 7(1): 8834[2017-08-18]. https://pubmed.ncbi.nlm.nih.gov/28821742/. DOI: 10.1038/s41598-017-07329-y.
|
38. |
Kirby MA, Pelivanov I, Song S, et al. Optical coherence elastography in ophthalmology[J]. J Biomed Opt, 2017, 22(12): 1-28. DOI: 10.1117/1.Jbo.22.12.121720.
|
39. |
Li R, Du Z, Qian X, et al. High resolution optical coherence elastography of retina under prosthetic electrode[J]. Quant Imaging Med Surg, 2021, 11(3): 918-927. DOI: 10.21037/qims-20-1137.
|
40. |
Bernabeu MO, Lu Y, Lammer J, et al. Characterization of parafoveal hemodynamics associated with diabetic retinopathy with adaptive optics scanning laser ophthalmoscopy and computational fluid dynamics[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2015, 2015: 8070-8073. DOI: 10.1109/EMBC.2015.7320266.
|
41. |
Patalano P. An oscillatory shear index-based model to describe progressive carotid artery stenosis[J]. Vasc Endovascular Surg, 2023, 57(1): 26-34. DOI: 10.1177/15385744221116837.
|
42. |
毛小雪, 牛媖, 刘宇航, 等. 光学相干断层扫描血管成像在糖尿病视网膜病变中的应用进展[J]. 中华糖尿病杂志, 2022, 14(1): 80-83. DOI: 10.3760/cma.j.cn115791-20210312-00147.Mao XX, Niu Y, Liu YH, et al. Advances in optical coherence tomography angiography for diabetic retinopathy[J]. Chin J Diabetes Mellitus, 2022, 14(1): 80-83. DOI: 10.3760/cma.j.cn115791-20210312-00147.
|
43. |
Smith N, Georgiou M, Jalali MS, et al. Planning, implementing and governing systems-based co-creation: the DISCOVER framework[J/OL]. Health Res Policy Syst, 2024, 22(1): 6[2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/38191430/. DOI: 10.1186/s12961-023-01076-5.
|
44. |
Klaassen I, van Geest RJ, Kuiper EJ, et al. The role of CTGF in diabetic retinopathy[J]. Exp Eye Res, 2015, 133: 37-48. DOI: 10.1016/j.exer.2014.10.016.
|
45. |
Niu R, Nie ZT, Liu L, et al. Follistatin-like protein 1 functions as a potential target of gene therapy in proliferative diabetic retinopathy[J]. Aging (Albany NY), 2021, 13(6): 8643-8664. DOI: 10.18632/aging.202678.
|
46. |
Muir VG, Burdick JA. Chemically modified biopolymers for the formation of biomedical hydrogels[J]. Chem Rev, 2021, 121(18): 10908-10949. DOI: 10.1021/acs.chemrev.0c00923.
|
47. |
Liu YC, Lin YK, Lin YT, et al. Injectable, antioxidative, and tissue-adhesive nanocomposite hydrogel as a potential treatment for inner retina injuries[J/OL]. Adv Sci (Weinh), 2024, 11(11): e2308635[2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38233151/. DOI: 10.1002/advs.202308635.
|
48. |
Zhao F, Fan S, Ghate D, et al. A hydrogel ionic circuit based high-intensity iontophoresis device for intraocular macromolecule and nanoparticle delivery[J/OL]. Adv Mater, 2022, 34(5): e2107315[2021-12-08]. https://pubmed.ncbi.nlm.nih.gov/34716729/. DOI: 10.1002/adma.202107315.
|
49. |
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials[J]. Front Biosci (Landmark Ed), 2014, 19(4): 687-706. DOI: 10.2741/4236.
|
50. |
Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26(12): 1300-1305. DOI: 10.1101/gad.192856.112.
|
51. |
Sorrentino G, Ruggeri N, Specchia V, et al. Metabolic control of YAP and TAZ by the mevalonate pathway[J]. Nat Cell Biol, 2014, 16(4): 357-366. DOI: 10.1038/ncb2936.
|
52. |
Yang H, Huang Y, Chen X, et al. The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-β(2) , elucidated by treatment with CTGFsiRNA[J]. Acta Ophthalmol, 2010, 88(6): 652-659. DOI: 10.1111/j.1755-3768.2009.01641.x.
|
53. |
Parravano M, Cennamo G, Di Antonio L, et al. Multimodal imaging in diabetic retinopathy and macular edema: an update about biomarkers[J]. Surv Ophthalmol, 2024, 69(6): 893-904. DOI: 10.1016/j.survophthal.2024.06.006.
|
54. |
Zhang Q, Zheng J, Li L, et al. Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair[J]. Bioact Mater, 2025, 46: 173-194. DOI: 10.1016/j.bioactmat.2024.12.009.
|
55. |
冯晓莹, 孟倩, 陈巍, 等. 类器官芯片在医学研究中的应用进展[J]. 中国生物工程杂志, 2022, 42(1): 112-118. DOI: 10.13523/j.cb.2106050.Feng XY, Meng Q, Chen W, et al. Advances in the application of organoids-on-chips in medical research[J]. China Biotechnol, 2022, 42(1): 112-118. DOI: 10.13523/j.cb.2106050.
|
56. |
Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues[J]. Bioact Mater, 2024, 37: 348-377. DOI: 10.1016/j.bioactmat.2024.03.033.
|