1. |
Govetto A, Lalane RA 3rd, Sarraf D, et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme[J]. Am J Ophthalmol, 2017, 175: 99-113. DOI: 10.1016/j.ajo.2016.12.006.
|
2. |
Fung AT, Galvin J, Tran T. Epiretinal membrane: a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 289-308. DOI: 10.1111/ceo.13914.
|
3. |
Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells[J]. Prog Retin Eye Res, 2006, 25(2): 149-164. DOI: 10.1016/j.preteyeres.2005.09.001.
|
4. |
Pilli S, Lim P, Zawadzki RJ, et al. Fourier-domain optical coherence tomography of eyes with idiopathic epiretinal membrane: correlation between macular morphology and visual function[J]. Eye (Lond), 2011, 25(6): 775-783. DOI: 10.1038/eye.2011.55.
|
5. |
Myojin S, Yoshimura T, Yoshida S, et al. Gene expression analysis of the irrigation solution samples collected during vitrectomy for idiopathic epiretinal membrane[J/OL]. PLoS One, 2016, 11(10): e0164355[2016-10-13]. https://pubmed.ncbi.nlm.nih.gov/27736918/. DOI: 10.1371/journal.pone.0164355.
|
6. |
Zandi S, Tappeiner C, Pfister IB, et al. Vitreal cytokine profile differences between eyes with epiretinal membranes or macular holes[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6320-6326. DOI: 10.1167/iovs.16-20657.
|
7. |
Mao J, Zhang C, Zhang S, et al. Predictors of anti-VEGF efficacy in chronic central serous chorioretinopathy based on intraocular cytokine levels and pigment epithelium detachment subtypes[J/OL]. Acta Ophthalmol, 2022, 100(7): e1385-e1394[2022-02-04]. https://pubmed.ncbi.nlm.nih.gov/35122421/. DOI: 10.1111/aos.15109.
|
8. |
Ożóg MK, Nowak-Wąs M, Rokicki W. Pathophysiology and clinical aspects of epiretinal membrane-review[J/OL]. Front Med (Lausanne), 2023, 10: 1121270[2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/37636571/. DOI: 10.3389/fmed.2023.1121270.
|
9. |
Pollreisz A, Funk M, Breitwieser FP, et al. Quantitative proteomics of aqueous and vitreous fluid from patients with idiopathic epiretinal membranes[J]. Exp Eye Res, 2013, 108: 48-58. DOI: 10.1016/j.exer.2012.11.010.
|
10. |
Song P, Li P, Geng W, et al. Cytokines possibly involved in idiopathic epiretinal membrane progression after uncomplicated cataract surgery[J/OL]. Exp Eye Res, 2022, 217: 108957[2022-01-22]. https://pubmed.ncbi.nlm.nih.gov/35077755/. DOI: 10.1016/j.exer.2022.108957.
|
11. |
Chen L, Zhang W, Xie P, et al. Comparisons of vitreal angiogenic, inflammatory, profibrotic cytokines, and chemokines profile between patients with epiretinal membrane and macular hole[J/OL]. J Ophthalmol, 2021, 2021: 9947250[2021-07-13]. https://pubmed.ncbi.nlm.nih.gov/34336263/. DOI: 10.1155/2021/9947250.
|
12. |
Govetto A, Virgili G, Rodriguez FJ, et al. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes: surgical results at 12 months[J]. Retina, 2019, 39(2): 347-357. DOI: 10.1097/iae.0000000000001940.
|
13. |
González-Saldivar G, Berger A, Wong D, et al. Ectopic inner foveal layer classification scheme predicts visual outcomes after epiretinal membrane surgery[J]. Retina, 2020, 40(4): 710-717. DOI: 10.1097/iae.0000000000002486.
|
14. |
Bianchi L, Altera A, Barone V, et al. Untangling the extracellular matrix of idiopathic epiretinal membrane: a path winding among structure, interactomics and translational medicine[J/OL]. Cells, 2022, 11(16): 2531[2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/36010606/. DOI: 10.3390/cells11162531.
|
15. |
Lennikov A, Mukwaya A, Fan L, et al. Synergistic interactions of PlGF and VEGF contribute to blood-retinal barrier breakdown through canonical NFκB activation[J/OL]. Exp Cell Res, 2020, 397(2): 112347[2020-12-15]. https://pubmed.ncbi.nlm.nih.gov/33130176/. DOI: 10.1016/j.yexcr.2020.112347.
|
16. |
Kanda A, Noda K, Hirose I, et al. TGF-β-SNAIL axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane[J/OL]. Sci Rep, 2019, 9(1): 673[2019-01-24]. https://pubmed.ncbi.nlm.nih.gov/30679596/. DOI: 10.1038/s41598-018-36917-9.
|
17. |
Joussen AM, Ricci F, Paris LP, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data[J]. Eye (Lond), 2021, 35(5): 1305-1316. DOI: 10.1038/s41433-020-01377-x.
|
18. |
Mirshahi A, Hoehn R, Lorenz K, et al. Anti-tumor necrosis factor alpha for retinal diseases: current knowledge and future concepts[J]. J Ophthalmic Vis Res, 2012, 7(1): 39-44.
|
19. |
Harjunpää H, Llort Asens M, Guenther C, et al. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment[J/OL]. Front Immunol, 2019, 10: 1078[2019-05-22]. https://pubmed.ncbi.nlm.nih.gov/31231358/. DOI: 10.3389/fimmu.2019.01078.
|
20. |
Srejovic JV, Muric MD, Jakovljevic VL, et al. Molecular and cellular mechanisms involved in the pathophysiology of retinal vascular disease-interplay between inflammation and oxidative stress[J/OL]. Int J Mol Sci, 2024, 25(21): 11850[2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/39519401/. DOI: 10.3390/ijms252111850.
|