- Beijing Tongren Hospital, Capital Medical University, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, National Engineering Research Center for Ophthalmology, Beijing 100730, China;
Alzheimer's disease (AD) is a neurodegenerative disorder with insidious onset and poor prognosis, and it is the primary cause of senile dementia. Its early diagnosis is challenging, and existing methods mostly rely on high-cost and invasive examinations. As an integral part of the central nervous system, the retina provides a non-invasive and efficient observation window for AD diagnosis. In recent years, with the development of ophthalmic imaging technologies such as optical coherence tomography, optical coherence tomography angiography, and hyperspectral imaging, a growing number of studies have revealed that AD patients exhibit retinal structural changes, structural and functional abnormalities of retinal blood vessels, and that amyloid-beta and Tau deposits can be detected via specific imaging methods—suggesting that these changes may occur prior to brain lesions. Meanwhile, the integrated analysis of multimodal imaging shows promising prospects in identifying retinal biomarkers and predicting AD risk, demonstrates the significant potential of retinal imaging technology in the early screening, diagnosis, and disease progression monitoring of AD, and provides a new source of biomarkers and potential clinical applications for AD research.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | 张丽, 李建桥. 重视全身疾病的眼部表现[J]. 眼科学报, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.Zhang L, Li JQ. Attach importance to ocular manifestations of systemic diseases[J]. Eye Science, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01. |
2. | Gustavsson A, Norton N, Fast T, et al. Global estimates on the number of persons across the Alzheimer's disease continuum[J]. Alzheimers Dement, 2023, 19(2): 658-670. DOI: 10.1002/alz.12694. |
3. | Feke GT, Hyman BT, Stern RA, et al. Retinal blood flow in mild cognitive impairment and Alzheimer's disease[J]. Alzheimers Dement (Amst), 2015, 1(2): 144-151. DOI: 10.1016/j.dadm.2015.01.004. |
4. | Huang Q, Cohen MA, Alsina FC, et al. Intravital imaging of mouse embryos[J]. Science, 2020, 368(6487): 181-186. DOI: 10.1126/science.aba0210. |
5. | Jiang X, Xie M, Ma L, et al. International publication trends in the application of artificial intelligence in ophthalmology research: an updated bibliometric analysis[J/OL]. Ann Transl Med, 2023, 11(5): 219[2023-03-09]. https://pubmed.ncbi.nlm.nih.gov/37007552/. DOI: 10.21037/atm-22-3773. |
6. | Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6): 595-608. DOI: 10.15252/emmm.201606210. |
7. | Chan VTT, Ran AR, Wagner SK, et al. Value proposition of retinal imaging in Alzheimer's disease screening: a review of eight evolving trends[J/OL]. Prog Retin Eye Res, 2024, 103: 101290[2024-08-22]. https://pubmed.ncbi.nlm.nih.gov/39173942/. DOI: 10.1016/j.preteyeres.2024.101290. |
8. | Masland RH. The fundamental plan of the retina[J]. Nat Neurosci, 2001, 4(9): 877-886. DOI: 10.1038/nn0901-877. |
9. | Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[J/OL]. Ageing Res Rev, 2021, 69: 101361[2021-05-14]. https://pubmed.ncbi.nlm.nih.gov/34000463/. DOI: 10.1016/j.arr.2021.101361. |
10. | Cheung CY, Ong YT, Ikram MK, et al. Microvascular network alterations in the retina of patients with Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(2): 135-142. DOI: 10.1016/j.jalz.2013.06.009. |
11. | Grimaldi A, Pediconi N, Oieni F, et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer's disease patients, possible biomarkers for early diagnosis[J/OL]. Front Neurosci, 2019, 13: 925[2019-09-04]. https://pubmed.ncbi.nlm.nih.gov/31551688/. DOI: 10.3389/fnins.2019.00925. |
12. | Georgevsky D, Retsas S, Raoufi N, et al. A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer's disease[J/OL]. Transl Neurodegener, 2019, 8: 30[2019-10-01]. https://pubmed.ncbi.nlm.nih.gov/31592131/. DOI: 10.1186/s40035-019-0170-z. |
13. | Ho WL, Leung Y, Cheng SS, et al. Investigating degeneration of the retina in young and aged tau P301L mice[J]. Life Sci, 2015, 124: 16-23. DOI: 10.1016/j.lfs.2014.12.019. |
14. | 延艳妮, 魏文斌, 汪东生. 眼科光学相干断层扫描技术的新进展[J]. 中华眼科医学杂志 (电子版), 2013, 2(1): 38-40. DOI: 10.3877/cma.j.issn.2095-2007.2013.01.012.Yan YN, Wei WB, Wang DS. New development of optical coherence tomography in ophtalmology[J]. Chin J Ophthalmol (Electronic Edition), 2013, 2(1): 38-40. DOI: 10.3877/cma.j.issn.2095-2007.2013.01.012. |
15. | Choi SH, Park SJ, Kim NR. Macular ganglion cell -inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease[J/OL]. PLoS One, 2016, 11(9): e0162202[2016-09-06]. https://pubmed.ncbi.nlm.nih.gov/27598262/. DOI: 10.1371/journal.pone.0162202. |
16. | Sheriff S, Shen T, Abdal S, et al. Retinal thickness and vascular parameters using optical coherence tomography in Alzheimer's disease: a meta-analysis[J]. Neural Regen Res, 2023, 18(11): 2504-2513. DOI: 10.4103/1673-5374.371380. |
17. | Carazo-Barrios L, Archidona-Arranz A, Claros-Ruiz A, et al. Correlation between retinal nerve fibre layer thickness and white matter lesions in Alzheimer's disease[J]. Int J Geriatr Psychiatry, 2021, 36(6): 935-942. DOI: 10.1002/gps.5496. |
18. | Mathew S, Wudunn D, Mackay DD, et al. Association of brain volume and retinal thickness in the early stages of Alzheimer's disease[J]. J Alzheimers Dis, 2023, 91(2): 743-752. DOI: 10.3233/JAD-210533. |
19. | Lian TH, Jin Z, Qu YZ, et al. The relationship between retinal nerve fiber layer thickness and clinical symptoms of Alzheimer's disease[J/OL]. Front Aging Neurosci, 2020, 12: 584244[2021-01-29]. https://pubmed.ncbi.nlm.nih.gov/33584241/. DOI: 10.3389/fnagi.2020.584244. |
20. | Kim JI, Kang BH. Decreased retinal thickness in patients with Alzheimer's disease is correlated with disease severity[J/OL]. PLoS One, 2019, 14(11): e0224180[2019-11-15]. https://pubmed.ncbi.nlm.nih.gov/31689310/. DOI: 10.1371/journal.pone.0224180. |
21. | Mutlu U, Colijn JM, Ikram MA, et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study[J]. JAMA Neurol, 2018, 75(10): 1256-1263. DOI: 10.1001/jamaneurol.2018.1563. |
22. | Álvarez-Rodríguez L, Pueyo A, de Moura J, et al. Fully automatic deep convolutional approaches for the screening of neurodegeneratives diseases using multi-view OCT images[J/OL]. Artif Intell Med, 2024, 158: 103006[2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/39504622/. DOI: 10.1016/j.artmed.2024.103006. |
23. | Lee MW, Park KS, Lim HB, et al. Long-term reproducibility of GC-IPL thickness measurements using spectral domain optical coherence tomography in eyes with high myopia[J/OL]. Sci Rep, 2018, 8(1): 11037[2018-07-23]. https://pubmed.ncbi.nlm.nih.gov/30038425/. DOI: 10.1038/s41598-018-29466-8. |
24. | Cheung CY, Ong YT, Hilal S, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease[J]. J Alzheimers Dis, 2015, 45(1): 45-56. DOI: 10.3233/JAD-141659. |
25. | Van Der Heide FCT, Steens ILM, Limmen B, et al. Thinner inner retinal layers are associated with lower cognitive performance, lower brain volume, and altered white matter network structure-The Maastricht Study[J]. Alzheimers Dement, 2024, 20(1): 316-329. DOI: 10.1002/alz.13442. |
26. | Wisely CE, Wang D, Henao R, et al. Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging[J]. Br J Ophthalmol, 2022, 106(3): 388-395. DOI: 10.1136/bjophthalmol-2020-317659. |
27. | Frost S, Kanagasingam Y, Sohrabi H, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease[J/OL]. Transl Psychiatry, 2013, 3(2): e233[2013-02-26]. https://pubmed.ncbi.nlm.nih.gov/23443359/. DOI: 10.1038/tp.2012.150. |
28. | Golzan M, Goozee K, Georgevsky D, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2017, 9(1): 13[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28253913/. DOI: 10.1186/s13195-017-0239-9. |
29. | Olafsdottir OB, Saevarsdottir HS, Hardarson SH, et al. Retinal oxygen metabolism in patients with mild cognitive impairment[J]. Alzheimers Dement (Amst), 2018, 10: 340-345. DOI: 10.1016/j.dadm.2018.03.002. |
30. | Cheung C Y, Ran A R, Wang S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study[J/OL]. Lancet Digit Health, 2022, 4(11): e806-e815[2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/36192349/. DOI: 10.1016/S2589-7500(22)00169-8. |
31. | Pead E, Thompson AC, Grewal DS, et al. Retinal vascular changes in Alzheimer's dementia and mild cognitive impairment: a pilot study using ultra-widefield imaging[J/OL]. Transl Vis Sci Technol, 2023, 12(1): 13[2023-01-03]. https://pubmed.ncbi.nlm.nih.gov/36622689/. DOI: 10.1167/tvst.12.1.13. |
32. | Csincsik L, Macgillivray TJ, Flynn E, et al. Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study[J]. Ophthalmic Res, 2018, 59(4): 182-192. DOI: 10.1159/000487053. |
33. | Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer's disease and mild cognitive impairment[J/OL]. Sci Rep, 2019, 9(1): 63[2019-01-11]. https://pubmed.ncbi.nlm.nih.gov/30635610/. DOI: 10.1038/s41598-018-37271-6. |
34. | 薛亚璇, 程方. 光学相干断层扫描血管成像在眼科临床中的应用[J]. 国际眼科杂志, 2020, 20(4): 651-655. DOI: 10.3980/j.issn.1672-5123.2020.4.16.Xue YX, Cheng F. Application of optical coherence tomography ophthalmology[J]. Int Eye Sci, 2020, 20(4): 651-655. DOI: 10.3980/j.issn.1672-5123.2020.4.16. |
35. | Hui J, Zhao Y, Yu S, et al. Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer's disease patients: a meta-analysis[J/OL]. PLoS One, 2021, 16(8): e0255362[2021-08-11]. https://pubmed.ncbi.nlm.nih.gov/34379663/. DOI: 10.1371/journal.pone.0255362. |
36. | Chua J, Hu Q, Ke M, et al. Retinal microvasculature dysfunction is associated with Alzheimer's disease and mild cognitive impairment[J/OL]. Alzheimers Res Ther, 2020, 12(1): 161[2020-12-04]. https://pubmed.ncbi.nlm.nih.gov/33276820/. DOI: 10.1186/s13195-020-00724-0. |
37. | Yoon JM, Lim CY, Noh H, et al. Enhancing foveal avascular zone analysis for Alzheimer's diagnosis with AI segmentation and machine learning using multiple radiomic features[J/OL]. Sci Rep, 2024, 14(1): 1841[2024-01-22]. https://pubmed.ncbi.nlm.nih.gov/38253722/. DOI: 10.1038/s41598-024-51612-8. |
38. | Liu S, Zhang Z, Gu Y, et al. Beyond the eye: A relational model for early dementia detection using retinal OCTA images[J/OL]. Med Image Anal, 2025, 102: 103513[2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/40022853/. DOI: 10.1016/j.media.2025.103513. |
39. | Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina[J]. Acta Neuropathol, 2020, 139(5): 813-836. DOI: 10.1007/s00401-020-02134-w. |
40. | Sharafi SM, Sylvestre JP, Chevrefils C, et al. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images[J]. Alzheimers Dement (N Y), 2019, 5: 610-617. DOI: 10.1016/j.trci.2019.09.006. |
41. | Löffler KU, Edward DP, Tso MO. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina[J]. Invest Ophthalmol Vis Sci, 1995, 36(1): 24-31. |
42. | Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease[J/OL]. JCI Insight, 2017, 2(16): e93621[2017-08-17]. https://pubmed.ncbi.nlm.nih.gov/28814675/. DOI: 10.1172/jci.insight.93621. |
43. | Ngolab J, Donohue M, Belsha A, et al. Feasibility study for detection of retinal amyloid in clinical trials: The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial[J/OL]. Alzheimers Dement (Amst), 2021, 13(1): e12199[2021-08-17]. https://pubmed.ncbi.nlm.nih.gov/34430703/. DOI: 10.1002/dad2.12199. |
44. | Qiu Y, Jin T, Mason E, et al. Predicting thioflavin fluorescence of retinal amyloid deposits associated with Alzheimer's disease from their polarimetric properties[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 47[2020-08-14]. https://pubmed.ncbi.nlm.nih.gov/32879757/. DOI: 10.1167/tvst.9.2.47. |
45. | Borovkova M, Sieryi O, Lopushenko I, et al. Screening of Alzheimer's disease with multiwavelength stokes polarimetry in a mouse model[J]. IEEE Trans Med Imaging, 2022, 41(4): 977-982. DOI: 10.1109/TMI.2021.3129700. |
46. | More SS, Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer's mouse retina well before onset of cognitive decline[J]. ACS Chem Neurosci, 2015, 6(2): 306-315. DOI: 10.1021/cn500242z. |
47. | Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease[J/OL]. Nat Commun, 2019, 10(1): 4227[2019-09-17]. https://pubmed.ncbi.nlm.nih.gov/31530809/. DOI: 10.1038/s41467-019-12242-1. |
48. | Du X, Koronyo Y, Mirzaei N, et al. Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau[J/OL]. PNAS Nexus, 2022, 1(4): pgac164[2022-08-19]. https://pubmed.ncbi.nlm.nih.gov/36157597/. DOI: 10.1093/pnasnexus/pgac164. |
49. | Ossenkoppele R, Van Der Kant R, Hansson O. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. DOI: 10.1016/S1474-4422(22)00168-5. |
50. | Hart De Ruyter FJ, Morrema THJ, Den Haan J, et al. Phosphorylated tau in the retina correlates with tau pathology in the brain in Alzheimer's disease and primary tauopathies[J]. Acta Neuropathol, 2023, 145(2): 197-218. DOI: 10.1007/s00401-022-02525-1. |
51. | Walkiewicz G, Ronisz A, Van Ginderdeuren R, et al. Primary retinal tauopathy: a tauopathy with a distinct molecular pattern[J]. Alzheimers Dement, 2024, 20(1): 330-340. DOI: 10.1002/alz.13424. |
52. | Schön C, Hoffmann NA, Ochs SM, et al. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice[J/OL]. PLoS One, 2012, 7(12): e53547[2012-12-31]. https://pubmed.ncbi.nlm.nih.gov/23300938/. DOI: 10.1371/journal.pone.0053547. |
53. | Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259. DOI: 10.1007/BF00308809. |
54. | Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018. |
- 1. 张丽, 李建桥. 重视全身疾病的眼部表现[J]. 眼科学报, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.Zhang L, Li JQ. Attach importance to ocular manifestations of systemic diseases[J]. Eye Science, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.
- 2. Gustavsson A, Norton N, Fast T, et al. Global estimates on the number of persons across the Alzheimer's disease continuum[J]. Alzheimers Dement, 2023, 19(2): 658-670. DOI: 10.1002/alz.12694.
- 3. Feke GT, Hyman BT, Stern RA, et al. Retinal blood flow in mild cognitive impairment and Alzheimer's disease[J]. Alzheimers Dement (Amst), 2015, 1(2): 144-151. DOI: 10.1016/j.dadm.2015.01.004.
- 4. Huang Q, Cohen MA, Alsina FC, et al. Intravital imaging of mouse embryos[J]. Science, 2020, 368(6487): 181-186. DOI: 10.1126/science.aba0210.
- 5. Jiang X, Xie M, Ma L, et al. International publication trends in the application of artificial intelligence in ophthalmology research: an updated bibliometric analysis[J/OL]. Ann Transl Med, 2023, 11(5): 219[2023-03-09]. https://pubmed.ncbi.nlm.nih.gov/37007552/. DOI: 10.21037/atm-22-3773.
- 6. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6): 595-608. DOI: 10.15252/emmm.201606210.
- 7. Chan VTT, Ran AR, Wagner SK, et al. Value proposition of retinal imaging in Alzheimer's disease screening: a review of eight evolving trends[J/OL]. Prog Retin Eye Res, 2024, 103: 101290[2024-08-22]. https://pubmed.ncbi.nlm.nih.gov/39173942/. DOI: 10.1016/j.preteyeres.2024.101290.
- 8. Masland RH. The fundamental plan of the retina[J]. Nat Neurosci, 2001, 4(9): 877-886. DOI: 10.1038/nn0901-877.
- 9. Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[J/OL]. Ageing Res Rev, 2021, 69: 101361[2021-05-14]. https://pubmed.ncbi.nlm.nih.gov/34000463/. DOI: 10.1016/j.arr.2021.101361.
- 10. Cheung CY, Ong YT, Ikram MK, et al. Microvascular network alterations in the retina of patients with Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(2): 135-142. DOI: 10.1016/j.jalz.2013.06.009.
- 11. Grimaldi A, Pediconi N, Oieni F, et al. Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer's disease patients, possible biomarkers for early diagnosis[J/OL]. Front Neurosci, 2019, 13: 925[2019-09-04]. https://pubmed.ncbi.nlm.nih.gov/31551688/. DOI: 10.3389/fnins.2019.00925.
- 12. Georgevsky D, Retsas S, Raoufi N, et al. A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer's disease[J/OL]. Transl Neurodegener, 2019, 8: 30[2019-10-01]. https://pubmed.ncbi.nlm.nih.gov/31592131/. DOI: 10.1186/s40035-019-0170-z.
- 13. Ho WL, Leung Y, Cheng SS, et al. Investigating degeneration of the retina in young and aged tau P301L mice[J]. Life Sci, 2015, 124: 16-23. DOI: 10.1016/j.lfs.2014.12.019.
- 14. 延艳妮, 魏文斌, 汪东生. 眼科光学相干断层扫描技术的新进展[J]. 中华眼科医学杂志 (电子版), 2013, 2(1): 38-40. DOI: 10.3877/cma.j.issn.2095-2007.2013.01.012.Yan YN, Wei WB, Wang DS. New development of optical coherence tomography in ophtalmology[J]. Chin J Ophthalmol (Electronic Edition), 2013, 2(1): 38-40. DOI: 10.3877/cma.j.issn.2095-2007.2013.01.012.
- 15. Choi SH, Park SJ, Kim NR. Macular ganglion cell -inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease[J/OL]. PLoS One, 2016, 11(9): e0162202[2016-09-06]. https://pubmed.ncbi.nlm.nih.gov/27598262/. DOI: 10.1371/journal.pone.0162202.
- 16. Sheriff S, Shen T, Abdal S, et al. Retinal thickness and vascular parameters using optical coherence tomography in Alzheimer's disease: a meta-analysis[J]. Neural Regen Res, 2023, 18(11): 2504-2513. DOI: 10.4103/1673-5374.371380.
- 17. Carazo-Barrios L, Archidona-Arranz A, Claros-Ruiz A, et al. Correlation between retinal nerve fibre layer thickness and white matter lesions in Alzheimer's disease[J]. Int J Geriatr Psychiatry, 2021, 36(6): 935-942. DOI: 10.1002/gps.5496.
- 18. Mathew S, Wudunn D, Mackay DD, et al. Association of brain volume and retinal thickness in the early stages of Alzheimer's disease[J]. J Alzheimers Dis, 2023, 91(2): 743-752. DOI: 10.3233/JAD-210533.
- 19. Lian TH, Jin Z, Qu YZ, et al. The relationship between retinal nerve fiber layer thickness and clinical symptoms of Alzheimer's disease[J/OL]. Front Aging Neurosci, 2020, 12: 584244[2021-01-29]. https://pubmed.ncbi.nlm.nih.gov/33584241/. DOI: 10.3389/fnagi.2020.584244.
- 20. Kim JI, Kang BH. Decreased retinal thickness in patients with Alzheimer's disease is correlated with disease severity[J/OL]. PLoS One, 2019, 14(11): e0224180[2019-11-15]. https://pubmed.ncbi.nlm.nih.gov/31689310/. DOI: 10.1371/journal.pone.0224180.
- 21. Mutlu U, Colijn JM, Ikram MA, et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study[J]. JAMA Neurol, 2018, 75(10): 1256-1263. DOI: 10.1001/jamaneurol.2018.1563.
- 22. Álvarez-Rodríguez L, Pueyo A, de Moura J, et al. Fully automatic deep convolutional approaches for the screening of neurodegeneratives diseases using multi-view OCT images[J/OL]. Artif Intell Med, 2024, 158: 103006[2024-11-01]. https://pubmed.ncbi.nlm.nih.gov/39504622/. DOI: 10.1016/j.artmed.2024.103006.
- 23. Lee MW, Park KS, Lim HB, et al. Long-term reproducibility of GC-IPL thickness measurements using spectral domain optical coherence tomography in eyes with high myopia[J/OL]. Sci Rep, 2018, 8(1): 11037[2018-07-23]. https://pubmed.ncbi.nlm.nih.gov/30038425/. DOI: 10.1038/s41598-018-29466-8.
- 24. Cheung CY, Ong YT, Hilal S, et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease[J]. J Alzheimers Dis, 2015, 45(1): 45-56. DOI: 10.3233/JAD-141659.
- 25. Van Der Heide FCT, Steens ILM, Limmen B, et al. Thinner inner retinal layers are associated with lower cognitive performance, lower brain volume, and altered white matter network structure-The Maastricht Study[J]. Alzheimers Dement, 2024, 20(1): 316-329. DOI: 10.1002/alz.13442.
- 26. Wisely CE, Wang D, Henao R, et al. Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging[J]. Br J Ophthalmol, 2022, 106(3): 388-395. DOI: 10.1136/bjophthalmol-2020-317659.
- 27. Frost S, Kanagasingam Y, Sohrabi H, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease[J/OL]. Transl Psychiatry, 2013, 3(2): e233[2013-02-26]. https://pubmed.ncbi.nlm.nih.gov/23443359/. DOI: 10.1038/tp.2012.150.
- 28. Golzan M, Goozee K, Georgevsky D, et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: ophthalmic biomarkers of preclinical Alzheimer's disease[J/OL]. Alzheimers Res Ther, 2017, 9(1): 13[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28253913/. DOI: 10.1186/s13195-017-0239-9.
- 29. Olafsdottir OB, Saevarsdottir HS, Hardarson SH, et al. Retinal oxygen metabolism in patients with mild cognitive impairment[J]. Alzheimers Dement (Amst), 2018, 10: 340-345. DOI: 10.1016/j.dadm.2018.03.002.
- 30. Cheung C Y, Ran A R, Wang S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study[J/OL]. Lancet Digit Health, 2022, 4(11): e806-e815[2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/36192349/. DOI: 10.1016/S2589-7500(22)00169-8.
- 31. Pead E, Thompson AC, Grewal DS, et al. Retinal vascular changes in Alzheimer's dementia and mild cognitive impairment: a pilot study using ultra-widefield imaging[J/OL]. Transl Vis Sci Technol, 2023, 12(1): 13[2023-01-03]. https://pubmed.ncbi.nlm.nih.gov/36622689/. DOI: 10.1167/tvst.12.1.13.
- 32. Csincsik L, Macgillivray TJ, Flynn E, et al. Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study[J]. Ophthalmic Res, 2018, 59(4): 182-192. DOI: 10.1159/000487053.
- 33. Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer's disease and mild cognitive impairment[J/OL]. Sci Rep, 2019, 9(1): 63[2019-01-11]. https://pubmed.ncbi.nlm.nih.gov/30635610/. DOI: 10.1038/s41598-018-37271-6.
- 34. 薛亚璇, 程方. 光学相干断层扫描血管成像在眼科临床中的应用[J]. 国际眼科杂志, 2020, 20(4): 651-655. DOI: 10.3980/j.issn.1672-5123.2020.4.16.Xue YX, Cheng F. Application of optical coherence tomography ophthalmology[J]. Int Eye Sci, 2020, 20(4): 651-655. DOI: 10.3980/j.issn.1672-5123.2020.4.16.
- 35. Hui J, Zhao Y, Yu S, et al. Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer's disease patients: a meta-analysis[J/OL]. PLoS One, 2021, 16(8): e0255362[2021-08-11]. https://pubmed.ncbi.nlm.nih.gov/34379663/. DOI: 10.1371/journal.pone.0255362.
- 36. Chua J, Hu Q, Ke M, et al. Retinal microvasculature dysfunction is associated with Alzheimer's disease and mild cognitive impairment[J/OL]. Alzheimers Res Ther, 2020, 12(1): 161[2020-12-04]. https://pubmed.ncbi.nlm.nih.gov/33276820/. DOI: 10.1186/s13195-020-00724-0.
- 37. Yoon JM, Lim CY, Noh H, et al. Enhancing foveal avascular zone analysis for Alzheimer's diagnosis with AI segmentation and machine learning using multiple radiomic features[J/OL]. Sci Rep, 2024, 14(1): 1841[2024-01-22]. https://pubmed.ncbi.nlm.nih.gov/38253722/. DOI: 10.1038/s41598-024-51612-8.
- 38. Liu S, Zhang Z, Gu Y, et al. Beyond the eye: A relational model for early dementia detection using retinal OCTA images[J/OL]. Med Image Anal, 2025, 102: 103513[2025-02-26]. https://pubmed.ncbi.nlm.nih.gov/40022853/. DOI: 10.1016/j.media.2025.103513.
- 39. Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina[J]. Acta Neuropathol, 2020, 139(5): 813-836. DOI: 10.1007/s00401-020-02134-w.
- 40. Sharafi SM, Sylvestre JP, Chevrefils C, et al. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images[J]. Alzheimers Dement (N Y), 2019, 5: 610-617. DOI: 10.1016/j.trci.2019.09.006.
- 41. Löffler KU, Edward DP, Tso MO. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina[J]. Invest Ophthalmol Vis Sci, 1995, 36(1): 24-31.
- 42. Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease[J/OL]. JCI Insight, 2017, 2(16): e93621[2017-08-17]. https://pubmed.ncbi.nlm.nih.gov/28814675/. DOI: 10.1172/jci.insight.93621.
- 43. Ngolab J, Donohue M, Belsha A, et al. Feasibility study for detection of retinal amyloid in clinical trials: The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) trial[J/OL]. Alzheimers Dement (Amst), 2021, 13(1): e12199[2021-08-17]. https://pubmed.ncbi.nlm.nih.gov/34430703/. DOI: 10.1002/dad2.12199.
- 44. Qiu Y, Jin T, Mason E, et al. Predicting thioflavin fluorescence of retinal amyloid deposits associated with Alzheimer's disease from their polarimetric properties[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 47[2020-08-14]. https://pubmed.ncbi.nlm.nih.gov/32879757/. DOI: 10.1167/tvst.9.2.47.
- 45. Borovkova M, Sieryi O, Lopushenko I, et al. Screening of Alzheimer's disease with multiwavelength stokes polarimetry in a mouse model[J]. IEEE Trans Med Imaging, 2022, 41(4): 977-982. DOI: 10.1109/TMI.2021.3129700.
- 46. More SS, Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer's mouse retina well before onset of cognitive decline[J]. ACS Chem Neurosci, 2015, 6(2): 306-315. DOI: 10.1021/cn500242z.
- 47. Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease[J/OL]. Nat Commun, 2019, 10(1): 4227[2019-09-17]. https://pubmed.ncbi.nlm.nih.gov/31530809/. DOI: 10.1038/s41467-019-12242-1.
- 48. Du X, Koronyo Y, Mirzaei N, et al. Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau[J/OL]. PNAS Nexus, 2022, 1(4): pgac164[2022-08-19]. https://pubmed.ncbi.nlm.nih.gov/36157597/. DOI: 10.1093/pnasnexus/pgac164.
- 49. Ossenkoppele R, Van Der Kant R, Hansson O. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. DOI: 10.1016/S1474-4422(22)00168-5.
- 50. Hart De Ruyter FJ, Morrema THJ, Den Haan J, et al. Phosphorylated tau in the retina correlates with tau pathology in the brain in Alzheimer's disease and primary tauopathies[J]. Acta Neuropathol, 2023, 145(2): 197-218. DOI: 10.1007/s00401-022-02525-1.
- 51. Walkiewicz G, Ronisz A, Van Ginderdeuren R, et al. Primary retinal tauopathy: a tauopathy with a distinct molecular pattern[J]. Alzheimers Dement, 2024, 20(1): 330-340. DOI: 10.1002/alz.13424.
- 52. Schön C, Hoffmann NA, Ochs SM, et al. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice[J/OL]. PLoS One, 2012, 7(12): e53547[2012-12-31]. https://pubmed.ncbi.nlm.nih.gov/23300938/. DOI: 10.1371/journal.pone.0053547.
- 53. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259. DOI: 10.1007/BF00308809.
- 54. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. DOI: 10.1016/j.jalz.2018.02.018.