- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China;
Autoimmune uveitis (AU) and mood disorders, such as anxiety and depression, share a close bidirectional association. Visual impairment caused by AU and the side effects of glucocorticoid therapy significantly increase the incidence of anxiety and depression. Conversely, mood disorders disrupt immune homeostasis through neuro-endocrine-immune mechanisms, exacerbating inflammatory responses and elevating the risk of AU recurrence. The primary reasons for AU-induced mood disorders include visual impairment, unpredictable fluctuations in vision, long-term treatment, and glucocorticoid-related psychiatric reactions. Meanwhile, mood disorders not only trigger the onset and recurrence of AU but also interfere with treatment efficacy by reducing patient adherence. The underlying mechanisms involve psychological stress leading to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, inflammatory factor-mediated “brain-eye axis” regulation, synergistic effects of the gut microbiota-brain-immune axis, and stage-specific immune regulatory characteristics of acute and chronic stress. Therefore, clinical management should emphasize the synergistic integration of psychological interventions and anti-inflammatory therapy to enable early detection and treatment of extramedullary lesions, optimize diagnostic and therapeutic protocols, and improve the prognosis of AU patients. Future research should further elucidate the molecular mechanisms underlying the interaction between mood and inflammation, establish multidisciplinary collaborative diagnosis and treatment systems, validate the efficacy of psychological interventions through large-scale clinical studies, and explore the development of neuroprotective anti-inflammatory drugs.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Wu D, Cai R, Pang Y, et al. Bidirectional association between uveitis and psoriasis: a systematic review and meta-analysis[J/OL]. Clin Exp Med, 2025, 25(1): 161[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/40372499/. DOI: 10.1007/s10238-025-01693-0. |
2. | Abdulla D, Ali Y, Menezo V, et al. The use of sustained release intravitreal steroid implants in non-infectious uveitis affecting the posterior segment of the eye[J]. Ophthalmol Ther, 2022, 11(2): 479-487. DOI: 10.1007/s40123-022-00456-4. |
3. | Prete M, Dammacco R, Fatone MC, et al. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features[J]. Clin Exp Med, 2016, 16(2): 125-136. DOI: 10.1007/s10238-015-0345-6. |
4. | Bermejo I, Squires H, Poku EN, et al. Adalimumab for non-infectious uveitis: is it cost-effective?[J]. Br J Ophthalmol, 2019, 103(11): 1633-1638. DOI: 10.1136/bjophthalmol-2018-312756. |
5. | Durrani OM, Tehrani NN, Marr JE, et al. Degree, duration, and causes of visual loss in uveitis[J]. Br J Ophthalmol, 2004, 88(9): 1159-1162. DOI: 10.1136/bjo.2003.037226. |
6. | Joltikov KA, Lobo-Chan AM. Epidemiology and risk factors in non-infectious uveitis: a systematic review[J/OL]. Front Med (Lausanne), 2021, 8: 695904[2021-09-10]. https://pubmed.ncbi.nlm.nih.gov/34568364/. DOI: 10.3389/fmed.2021.695904. |
7. | Rothova A, Buitenhuis HJ, Meenken C, et al. Uveitis and systemic disease[J]. Br J Ophthalmol, 1992, 76(3): 137-141. DOI: 10.1136/bjo.76.3.137. |
8. | Neti N, Pimsri A, Boonsopon S, et al. Triggering factors associated with a new episode of recurrent acute anterior uveitis[J/OL]. Sci Rep, 2021, 11(1): 12156[2021-06-09]. https://pubmed.ncbi.nlm.nih.gov/34108578/. DOI: 10.1038/s41598-021-91701-6. |
9. | Blank MB, Hennessy M, Eisenberg MM. Increasing quality of life and reducing HIV burden: the PATH+ intervention[J]. AIDS Behav, 2014, 18(4): 716-725. DOI: 10.1007/s10461-013-0606-x. |
10. | Somers TJ, Blumenthal JA, Guilak F, et al. Pain coping skills training and lifestyle behavioral weight management in patients with knee osteoarthritis: a randomized controlled study[J]. Pain, 2012, 153(6): 1199-209. DOI: 10.1016/j.pain.2012.02.023. |
11. | D'Acquisto F. Affective immunology: where emotions and the immune response converge[J]. Dialogues Clin Neurosci, 2017, 19(1): 9-19. DOI: 10.31887/DCNS.2017.19.1/fdacquisto. |
12. | Dolovich C, Bernstein CN, Singh H, et al. Anxiety and depression leads to anti-tumor necrosis factor discontinuation in inflammatory bowel disease[J]. Clin Gastroenterol Hepatol, 2021, 19(6): 1200-1208. DOI: 10.1016/j.cgh.2020.07.013. |
13. | Muscatello MR, Bruno A, Mento C, et al. Personality traits and emotional patterns in irritable bowel syndrome[J]. World J Gastroenterol, 2016, 22(28): 6402-6415. DOI: 10.3748/wjg.v22.i28.6402. |
14. | Marshall GD Jr. The adverse effects of psychological stress on immunoregulatory balance: applications to human inflammatory diseases[J]. Immunol Allergy Clin North Am, 2011, 31(1): 133-140. DOI: 10.1016/j.iac.2010.09.013. |
15. | Hamilton M. A rating scale for depression[J]. J Neurol Neurosurg Psychiatry, 1960, 23(1): 56-62. DOI: 10.1136/jnnp.23.1.56. |
16. | Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change[J]. Br J Psychiatry, 1979, 134: 382-389. DOI: 10.1192/bjp.134.4.382. |
17. | Beck AT, Ward CH, Mendelson M, et al. An inventory for measuring depression[J]. Arch Gen Psychiatry, 1961, 4: 561-571. DOI: 10.1001/archpsyc.1961.01710120031004. |
18. | Demyttenaere K, Jaspers L. Trends in (not) using scales in major depression: a categorization and clinical orientation[J/OL]. Eur Psychiatry, 2020, 63(1): e91[2020-09-23]. https://pubmed.ncbi.nlm.nih.gov/32962793/. DOI: 10.1192/j.eurpsy.2020.87. |
19. | Schwab J, Bialow M, Clemmons R, et al. The Beck depression inventory with medical inpatients[J]. Acta Psychiatr Scand, 1967, 43(3): 255-266. DOI: 10.1111/j.1600-0447.1967.tb05762.x. |
20. | Hamilton M. The assessment of anxiety states by rating[J]. Br J Med Psychol, 1959, 32(1): 50-55. DOI: 10.1111/j.2044-8341.1959.tb00467.x. |
21. | Maier W, Buller R, Philipp M, et al. The Hamilton Anxiety scale: reliability, validity and sensitivity to change in anxiety and depressive disorders[J]. J Affect Disord, 1988, 14(1): 61-68. DOI: 10.1016/0165-0327(88)90072-9. |
22. | Malhi GS, Mann JJ. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/s0140-6736(18)31948-2. |
23. | Baxter AJ, Scott KM, Vos T, et al. Global prevalence of anxiety disorders: a systematic review and meta-regression[J]. Psychol Med, 2013, 43(5): 897-910. DOI: 10.1017/s003329171200147x. |
24. | Cui B, Jia HZ, Gao LX, et al. Risk of anxiety and depression in patients with uveitis: a meta-analysis[J]. Int J Ophthalmol, 2022, 15(8): 1381-1390. DOI: 10.18240/ijo.2022.08.23. |
25. | Silva LMP, Arantes TE, Casaroli-Marano R, et al. Quality of life and psychological aaspects in patients with visual impairment secondary to uveitis: a clinical study in a tertiary care hospital in Brazil[J]. Ocul Immunol Inflamm, 2019, 27(1): 99-107. DOI: 10.1080/09273948.2017.1370551. |
26. | Onal S, Oray M, Yasa C, et al. Screening for depression and anxiety in patients with active uveitis[J]. Ocul Immunol Inflamm, 2018, 26(7): 1078-1093. DOI: 10.1080/09273948.2017.1319959. |
27. | Abdul-Halim R, Hassoun MM, Talih F, et al. Prevalence of depression in non-infectious uveitis patients in a tertiary care center in Lebanon[J]. Ocul Immunol Inflamm, 2025, 33(6): 920-925. DOI: 10.1080/09273948.2025.2469605. |
28. | Gardiner AM, Armstrong RA, Dunne MC, et al. Correlation between visual function and visual ability in patients with uveitis[J]. Br J Ophthalmol, 2002, 86(9): 993-996. DOI: 10.1136/bjo.86.9.993. |
29. | Chia EM, Wang JJ, Rochtchina E, et al. Impact of bilateral visual impairment on health-related quality of life: the Blue Mountains Eye Study[J]. Invest Ophthalmol Vis Sci, 2004, 45(1): 71-76. DOI: 10.1167/iovs.03-0661. |
30. | Taylor HR, Keeffe JE. World blindness: a 21st century perspective[J]. Br J Ophthalmol, 2001, 85(3): 261-266. DOI: 10.1136/bjo.85.3.261. |
31. | Marella M, Pesudovs K, Keeffe JE, et al. The psychometric validity of the NEI VFQ-25 for use in a low-vision population[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2878-2884. DOI: 10.1167/iovs.09-4494. |
32. | Qian Y, Glaser T, Esterberg E, et al. Depression and visual functioning in patients with ocular inflammatory disease[J]. Am J Ophthalmol, 2012, 153(2): 370-378. DOI: 10.1016/j.ajo.2011.06.028. |
33. | Schiffman RM, Jacobsen G, Whitcup SM. Visual functioning and general health status in patients with uveitis[J]. Arch Ophthalmol, 2001, 119(6): 841-849. DOI: 10.1001/archopht.119.6.841. |
34. | Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids[J]. Mayo Clin Proc, 2006, 81(10): 1361-1367. DOI: 10.4065/81.10.1361. |
35. | Ding H, Cui XY, Cui SY, et al. Depression-like behaviors induced by chronic corticosterone exposure via drinking water: time-course analysis[J]. Neurosci Lett, 2018, 687: 202-206. DOI: 10.1016/j.neulet.2018.09.059. |
36. | Gift AG, Wood RM, Cahill CA. Depression, somatization and steroid use in chronic obstructive pulmonary disease[J]. Int J Nurs Stud, 1989, 26(3): 281-286. DOI: 10.1016/0020-7489(89)90009-6. |
37. | Appenzeller S, Cendes F, Costallat LT. Acute psychosis in systemic lupus erythematosus[J]. Rheumatol Int, 2008, 28(3): 237-243. DOI: 10.1007/s00296-007-0410-x. |
38. | Nishimura K, Harigai M, Omori M, et al. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus[J]. Psychoneuroendocrinology, 2008, 33(3): 395-403. DOI: 10.1016/j.psyneuen.2007.12.007. |
39. | García-Aparicio Á, García de Yébenes MJ, Otón T, et al. Prevalence and Incidence of uveitis: a systematic review and meta-analysis[J]. Ophthalmic Epidemiol, 2021, 28(6): 461-468. DOI: 10.1080/09286586.2021.1882506. |
40. | Kessler RC, Amminger GP, Aguilar-Gaxiola S, et al. Age of onset of mental disorders: a review of recent literature[J]. Curr Opin Psychiatry, 2007, 20(4): 359-364. DOI: 10.1097/YCO.0b013e32816ebc8c. |
41. | Maca SM, Schiesser AW, Sobala A, et al. Distress, depression and coping in HLA-B27-associated anterior uveitis with focus on gender differences[J]. Br J Ophthalmol, 2011, 95(5): 699-704. DOI: 10.1136/bjo.2009.174839. |
42. | 祁恩, 吴敬. 葡萄膜炎复发原因分析[J]. 现代仪器与医疗, 2018, 24(5): 93-95. DOI: 10.11876/mimt201805038.Qi E, Wu J. Analysis of the causes of uveitis recurrence[J]. Modern Instruments & Mediccal Treatment, 2018, 24(5): 93-95. DOI: 10.11876/mimt201805038. |
43. | Dhabhar FS, Malarkey WB, Neri E, et al. Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: a tale of three hormones--Curt Richter Award winner[J]. Psychoneuroendocrinology, 2012, 37(9): 1345-1368. DOI: 10.1016/j.psyneuen.2012.05.008. |
44. | Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry[J]. Psychol Bull, 2004, 130(4): 601-630. DOI: 10.1037/0033-2909.130.4.601. |
45. | Miller GE, Cohen S. Psychological interventions and the immune system: a meta-analytic review and critique[J]. Health Psychol, 2001, 20(1): 47-63. DOI: 10.1037//0278-6133.20.1.47. |
46. | Kennedy PJ, Cryan JF, Quigley EM, et al. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome[J]. Psychol Med, 2014, 44(14): 3123-3134. DOI: 10.1017/s003329171400052x. |
47. | Morey JN, Boggero IA, Scott AB, et al. Current directions in stress and human immune function[J]. Curr Opin Psychol, 2015, 5: 13-7. DOI: 10.1016/j.copsyc.2015.03.007. |
48. | Kenna HA, Poon AW, de los Angeles CP, et al. Psychiatric complications of treatment with corticosteroids: review with case report[J]. Psychiatry Clin Neurosci, 2011, 65(6): 549-560. DOI: 10.1111/j.1440-1819.2011.02260.x. |
49. | Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye[J]. Prog Retin Eye Res, 2013, 33: 10-27. DOI: 10.1016/j.preteyeres.2012.10.002. |
50. | Yang LL, Stiernborg M, Skott E, et al. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD[J]. Eur Neuropsychopharmacol, 2020, 41: 118-131. DOI: 10.1016/j.euroneuro.2020.10.005. |
51. | Khan AJ, O'Donovan A, Neylan TC, et al. Suppression, but not reappraisal, is associated with inflammation in trauma-exposed veterans[J/OL]. Psychoneuroendocrinology, 2020, 122: 104871[2020-09-16]. https://pubmed.ncbi.nlm.nih.gov/33010600/. DOI: 10.1016/j.psyneuen.2020.104871. |
52. | Moriarity DP, Grehl MM, Walsh RFL, et al. A systematic review of associations between emotion regulation characteristics and inflammation[J/OL]. Neurosci Biobehav Rev, 2023, 150: 105162[2023-04-05]. https://pubmed.ncbi.nlm.nih.gov/37028579/. DOI: 10.1016/j.neubiorev.2023.105162. |
53. | Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses[J]. Cell Host Microbe, 2011, 10(4): 311-323. DOI: 10.1016/j.chom.2011.10.004. |
54. | Bloom SM, Bijanki VN, Nava GM, et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease[J]. Cell Host Microbe, 2011, 9(5): 390-403. DOI: 10.1016/j.chom.2011.04.009. |
55. | Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour[J]. Nat Rev Neurosci, 2012, 13(10): 701-712. DOI: 10.1038/nrn3346. |
56. | Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48: 186-194. DOI: 10.1016/j.bbi.2015.03.016. |
57. | Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry, 2016, 21(6): 786-796. DOI: 10.1038/mp.2016.44. |
58. | Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351): 570-575. DOI: 10.1126/science.aam9949. |
59. | Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. J Nutr, 2009, 139(9): 1619-1625. DOI: 10.3945/jn.109.104638. |
60. | Schroeder FA, Lin CL, Crusio WE, et al. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse[J]. Biol Psychiatry, 2007, 62(1): 55-64. DOI: 10.1016/j.biopsych.2006.06.036. |
61. | Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. DOI: 10.1016/j.cell.2015.02.047. |
62. | Lund ML, Egerod KL, Engelstoft MS, et al. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites[J]. Mol Metab, 2018, 11: 70-83. DOI: 10.1016/j.molmet.2018.03.004. |
63. | Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434. DOI: 10.1038/nature06005. |
64. | Li S, Shah NP. Characterization, anti-inflammatory and antiproliferative activities of natural and sulfonated exo-polysaccharides from streptococcus thermophilus ASCC 1275[J]. J Food Sci, 2016, 81(5): 1167-1176. DOI: 10.1111/1750-3841.13276. |
65. | Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression[J]. Nat Microbiol, 2019, 4(4): 623-632. DOI: 10.1038/s41564-018-0337-x. |
66. | Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist[J]. Proc Natl Acad Sci USA, 2003, 100(10): 5986-5990. DOI: 10.1073/pnas.1035999100. |
67. | Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation[J]. Cell, 2010, 140(6): 845-858. DOI: 10.1016/j.cell.2010.02.021. |
68. | Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI: 10.1126/science.1241165. |
69. | Ivanov, II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485-498. DOI: 10.1016/j.cell.2009.09.033. |
70. | Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. DOI: 10.1126/science.1198469. |
71. | Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses[J]. Immunity, 2011, 34(5): 794-806. DOI: 10.1016/j.immuni.2011.03.021. |
72. | O'Mahony SM, Clarke G, Borre YE, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis[J]. Behav Brain Res, 2015, 277: 32-48. DOI: 10.1016/j.bbr.2014.07.027. |
73. | Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J/OL]. Sci Transl Med, 2014, 6(263): 263ra158[2014-11-19]. https://pubmed.ncbi.nlm.nih.gov/25411471/. DOI: 10.1126/scitranslmed.3009759. |
74. | Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface[J]. Proc Natl Acad Sci USA, 2008, 105(52): 20858-20863. DOI: 10.1073/pnas.0808723105. |
75. | Jänig W. Sympathetic nervous system and inflammation: a conceptual view[J]. Auton Neurosci, 2014, 182: 4-14. DOI: 10.1016/j.autneu.2014.01.004. |
76. | Liu YZ, Wang YX, Jiang CL. Inflammation: the common pathway of stress-related diseases[J/OL]. Front Hum Neurosci, 2017, 11: 316[2017-06-20]. https://pubmed.ncbi.nlm.nih.gov/28676747/. DOI: 10.3389/fnhum.2017.00316. |
77. | Meng T, Nie L, Wang Y. Role of CD4+ T cell-derived cytokines in the pathogenesis of uveitis[J/OL]. Clin Exp Med, 2025, 25(1): 49[2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39909966/. DOI: 10.1007/s10238-025-01565-7. |
78. | Rohleder N. Stress and inflammation - The need to address the gap in the transition between acute and chronic stress effects[J]. Psychoneuroendocrinology, 2019, 105: 164-171. DOI: 10.1016/j.psyneuen.2019.02.021. |
79. | Walscheid K, Neekamp L, Heiligenhaus A, et al. Increased circulating proinflammatory T lymphocytes in children with different forms of anterior uveitis: results from a pilot study[J]. Ocul Immunol Inflamm, 2019, 27(5): 788-797. DOI: 10.1080/09273948.2018.1467464. |
80. | Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89(4): 587-596. DOI: 10.1016/s0092-8674(00)80240-8. |
81. | Fortini S, Costanzo E, Rellini E, et al. Use of the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) questionnaires for clinical decision-making and psychological referral in ophthalmic care: a multicentre observational study[J/OL]. BMJ Open, 2024, 14(1): e075141[2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/38238181/. DOI: 10.1136/bmjopen-2023-075141. |
- 1. Wu D, Cai R, Pang Y, et al. Bidirectional association between uveitis and psoriasis: a systematic review and meta-analysis[J/OL]. Clin Exp Med, 2025, 25(1): 161[2025-05-15]. https://pubmed.ncbi.nlm.nih.gov/40372499/. DOI: 10.1007/s10238-025-01693-0.
- 2. Abdulla D, Ali Y, Menezo V, et al. The use of sustained release intravitreal steroid implants in non-infectious uveitis affecting the posterior segment of the eye[J]. Ophthalmol Ther, 2022, 11(2): 479-487. DOI: 10.1007/s40123-022-00456-4.
- 3. Prete M, Dammacco R, Fatone MC, et al. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features[J]. Clin Exp Med, 2016, 16(2): 125-136. DOI: 10.1007/s10238-015-0345-6.
- 4. Bermejo I, Squires H, Poku EN, et al. Adalimumab for non-infectious uveitis: is it cost-effective?[J]. Br J Ophthalmol, 2019, 103(11): 1633-1638. DOI: 10.1136/bjophthalmol-2018-312756.
- 5. Durrani OM, Tehrani NN, Marr JE, et al. Degree, duration, and causes of visual loss in uveitis[J]. Br J Ophthalmol, 2004, 88(9): 1159-1162. DOI: 10.1136/bjo.2003.037226.
- 6. Joltikov KA, Lobo-Chan AM. Epidemiology and risk factors in non-infectious uveitis: a systematic review[J/OL]. Front Med (Lausanne), 2021, 8: 695904[2021-09-10]. https://pubmed.ncbi.nlm.nih.gov/34568364/. DOI: 10.3389/fmed.2021.695904.
- 7. Rothova A, Buitenhuis HJ, Meenken C, et al. Uveitis and systemic disease[J]. Br J Ophthalmol, 1992, 76(3): 137-141. DOI: 10.1136/bjo.76.3.137.
- 8. Neti N, Pimsri A, Boonsopon S, et al. Triggering factors associated with a new episode of recurrent acute anterior uveitis[J/OL]. Sci Rep, 2021, 11(1): 12156[2021-06-09]. https://pubmed.ncbi.nlm.nih.gov/34108578/. DOI: 10.1038/s41598-021-91701-6.
- 9. Blank MB, Hennessy M, Eisenberg MM. Increasing quality of life and reducing HIV burden: the PATH+ intervention[J]. AIDS Behav, 2014, 18(4): 716-725. DOI: 10.1007/s10461-013-0606-x.
- 10. Somers TJ, Blumenthal JA, Guilak F, et al. Pain coping skills training and lifestyle behavioral weight management in patients with knee osteoarthritis: a randomized controlled study[J]. Pain, 2012, 153(6): 1199-209. DOI: 10.1016/j.pain.2012.02.023.
- 11. D'Acquisto F. Affective immunology: where emotions and the immune response converge[J]. Dialogues Clin Neurosci, 2017, 19(1): 9-19. DOI: 10.31887/DCNS.2017.19.1/fdacquisto.
- 12. Dolovich C, Bernstein CN, Singh H, et al. Anxiety and depression leads to anti-tumor necrosis factor discontinuation in inflammatory bowel disease[J]. Clin Gastroenterol Hepatol, 2021, 19(6): 1200-1208. DOI: 10.1016/j.cgh.2020.07.013.
- 13. Muscatello MR, Bruno A, Mento C, et al. Personality traits and emotional patterns in irritable bowel syndrome[J]. World J Gastroenterol, 2016, 22(28): 6402-6415. DOI: 10.3748/wjg.v22.i28.6402.
- 14. Marshall GD Jr. The adverse effects of psychological stress on immunoregulatory balance: applications to human inflammatory diseases[J]. Immunol Allergy Clin North Am, 2011, 31(1): 133-140. DOI: 10.1016/j.iac.2010.09.013.
- 15. Hamilton M. A rating scale for depression[J]. J Neurol Neurosurg Psychiatry, 1960, 23(1): 56-62. DOI: 10.1136/jnnp.23.1.56.
- 16. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change[J]. Br J Psychiatry, 1979, 134: 382-389. DOI: 10.1192/bjp.134.4.382.
- 17. Beck AT, Ward CH, Mendelson M, et al. An inventory for measuring depression[J]. Arch Gen Psychiatry, 1961, 4: 561-571. DOI: 10.1001/archpsyc.1961.01710120031004.
- 18. Demyttenaere K, Jaspers L. Trends in (not) using scales in major depression: a categorization and clinical orientation[J/OL]. Eur Psychiatry, 2020, 63(1): e91[2020-09-23]. https://pubmed.ncbi.nlm.nih.gov/32962793/. DOI: 10.1192/j.eurpsy.2020.87.
- 19. Schwab J, Bialow M, Clemmons R, et al. The Beck depression inventory with medical inpatients[J]. Acta Psychiatr Scand, 1967, 43(3): 255-266. DOI: 10.1111/j.1600-0447.1967.tb05762.x.
- 20. Hamilton M. The assessment of anxiety states by rating[J]. Br J Med Psychol, 1959, 32(1): 50-55. DOI: 10.1111/j.2044-8341.1959.tb00467.x.
- 21. Maier W, Buller R, Philipp M, et al. The Hamilton Anxiety scale: reliability, validity and sensitivity to change in anxiety and depressive disorders[J]. J Affect Disord, 1988, 14(1): 61-68. DOI: 10.1016/0165-0327(88)90072-9.
- 22. Malhi GS, Mann JJ. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/s0140-6736(18)31948-2.
- 23. Baxter AJ, Scott KM, Vos T, et al. Global prevalence of anxiety disorders: a systematic review and meta-regression[J]. Psychol Med, 2013, 43(5): 897-910. DOI: 10.1017/s003329171200147x.
- 24. Cui B, Jia HZ, Gao LX, et al. Risk of anxiety and depression in patients with uveitis: a meta-analysis[J]. Int J Ophthalmol, 2022, 15(8): 1381-1390. DOI: 10.18240/ijo.2022.08.23.
- 25. Silva LMP, Arantes TE, Casaroli-Marano R, et al. Quality of life and psychological aaspects in patients with visual impairment secondary to uveitis: a clinical study in a tertiary care hospital in Brazil[J]. Ocul Immunol Inflamm, 2019, 27(1): 99-107. DOI: 10.1080/09273948.2017.1370551.
- 26. Onal S, Oray M, Yasa C, et al. Screening for depression and anxiety in patients with active uveitis[J]. Ocul Immunol Inflamm, 2018, 26(7): 1078-1093. DOI: 10.1080/09273948.2017.1319959.
- 27. Abdul-Halim R, Hassoun MM, Talih F, et al. Prevalence of depression in non-infectious uveitis patients in a tertiary care center in Lebanon[J]. Ocul Immunol Inflamm, 2025, 33(6): 920-925. DOI: 10.1080/09273948.2025.2469605.
- 28. Gardiner AM, Armstrong RA, Dunne MC, et al. Correlation between visual function and visual ability in patients with uveitis[J]. Br J Ophthalmol, 2002, 86(9): 993-996. DOI: 10.1136/bjo.86.9.993.
- 29. Chia EM, Wang JJ, Rochtchina E, et al. Impact of bilateral visual impairment on health-related quality of life: the Blue Mountains Eye Study[J]. Invest Ophthalmol Vis Sci, 2004, 45(1): 71-76. DOI: 10.1167/iovs.03-0661.
- 30. Taylor HR, Keeffe JE. World blindness: a 21st century perspective[J]. Br J Ophthalmol, 2001, 85(3): 261-266. DOI: 10.1136/bjo.85.3.261.
- 31. Marella M, Pesudovs K, Keeffe JE, et al. The psychometric validity of the NEI VFQ-25 for use in a low-vision population[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2878-2884. DOI: 10.1167/iovs.09-4494.
- 32. Qian Y, Glaser T, Esterberg E, et al. Depression and visual functioning in patients with ocular inflammatory disease[J]. Am J Ophthalmol, 2012, 153(2): 370-378. DOI: 10.1016/j.ajo.2011.06.028.
- 33. Schiffman RM, Jacobsen G, Whitcup SM. Visual functioning and general health status in patients with uveitis[J]. Arch Ophthalmol, 2001, 119(6): 841-849. DOI: 10.1001/archopht.119.6.841.
- 34. Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids[J]. Mayo Clin Proc, 2006, 81(10): 1361-1367. DOI: 10.4065/81.10.1361.
- 35. Ding H, Cui XY, Cui SY, et al. Depression-like behaviors induced by chronic corticosterone exposure via drinking water: time-course analysis[J]. Neurosci Lett, 2018, 687: 202-206. DOI: 10.1016/j.neulet.2018.09.059.
- 36. Gift AG, Wood RM, Cahill CA. Depression, somatization and steroid use in chronic obstructive pulmonary disease[J]. Int J Nurs Stud, 1989, 26(3): 281-286. DOI: 10.1016/0020-7489(89)90009-6.
- 37. Appenzeller S, Cendes F, Costallat LT. Acute psychosis in systemic lupus erythematosus[J]. Rheumatol Int, 2008, 28(3): 237-243. DOI: 10.1007/s00296-007-0410-x.
- 38. Nishimura K, Harigai M, Omori M, et al. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus[J]. Psychoneuroendocrinology, 2008, 33(3): 395-403. DOI: 10.1016/j.psyneuen.2007.12.007.
- 39. García-Aparicio Á, García de Yébenes MJ, Otón T, et al. Prevalence and Incidence of uveitis: a systematic review and meta-analysis[J]. Ophthalmic Epidemiol, 2021, 28(6): 461-468. DOI: 10.1080/09286586.2021.1882506.
- 40. Kessler RC, Amminger GP, Aguilar-Gaxiola S, et al. Age of onset of mental disorders: a review of recent literature[J]. Curr Opin Psychiatry, 2007, 20(4): 359-364. DOI: 10.1097/YCO.0b013e32816ebc8c.
- 41. Maca SM, Schiesser AW, Sobala A, et al. Distress, depression and coping in HLA-B27-associated anterior uveitis with focus on gender differences[J]. Br J Ophthalmol, 2011, 95(5): 699-704. DOI: 10.1136/bjo.2009.174839.
- 42. 祁恩, 吴敬. 葡萄膜炎复发原因分析[J]. 现代仪器与医疗, 2018, 24(5): 93-95. DOI: 10.11876/mimt201805038.Qi E, Wu J. Analysis of the causes of uveitis recurrence[J]. Modern Instruments & Mediccal Treatment, 2018, 24(5): 93-95. DOI: 10.11876/mimt201805038.
- 43. Dhabhar FS, Malarkey WB, Neri E, et al. Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: a tale of three hormones--Curt Richter Award winner[J]. Psychoneuroendocrinology, 2012, 37(9): 1345-1368. DOI: 10.1016/j.psyneuen.2012.05.008.
- 44. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry[J]. Psychol Bull, 2004, 130(4): 601-630. DOI: 10.1037/0033-2909.130.4.601.
- 45. Miller GE, Cohen S. Psychological interventions and the immune system: a meta-analytic review and critique[J]. Health Psychol, 2001, 20(1): 47-63. DOI: 10.1037//0278-6133.20.1.47.
- 46. Kennedy PJ, Cryan JF, Quigley EM, et al. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome[J]. Psychol Med, 2014, 44(14): 3123-3134. DOI: 10.1017/s003329171400052x.
- 47. Morey JN, Boggero IA, Scott AB, et al. Current directions in stress and human immune function[J]. Curr Opin Psychol, 2015, 5: 13-7. DOI: 10.1016/j.copsyc.2015.03.007.
- 48. Kenna HA, Poon AW, de los Angeles CP, et al. Psychiatric complications of treatment with corticosteroids: review with case report[J]. Psychiatry Clin Neurosci, 2011, 65(6): 549-560. DOI: 10.1111/j.1440-1819.2011.02260.x.
- 49. Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye[J]. Prog Retin Eye Res, 2013, 33: 10-27. DOI: 10.1016/j.preteyeres.2012.10.002.
- 50. Yang LL, Stiernborg M, Skott E, et al. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD[J]. Eur Neuropsychopharmacol, 2020, 41: 118-131. DOI: 10.1016/j.euroneuro.2020.10.005.
- 51. Khan AJ, O'Donovan A, Neylan TC, et al. Suppression, but not reappraisal, is associated with inflammation in trauma-exposed veterans[J/OL]. Psychoneuroendocrinology, 2020, 122: 104871[2020-09-16]. https://pubmed.ncbi.nlm.nih.gov/33010600/. DOI: 10.1016/j.psyneuen.2020.104871.
- 52. Moriarity DP, Grehl MM, Walsh RFL, et al. A systematic review of associations between emotion regulation characteristics and inflammation[J/OL]. Neurosci Biobehav Rev, 2023, 150: 105162[2023-04-05]. https://pubmed.ncbi.nlm.nih.gov/37028579/. DOI: 10.1016/j.neubiorev.2023.105162.
- 53. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses[J]. Cell Host Microbe, 2011, 10(4): 311-323. DOI: 10.1016/j.chom.2011.10.004.
- 54. Bloom SM, Bijanki VN, Nava GM, et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease[J]. Cell Host Microbe, 2011, 9(5): 390-403. DOI: 10.1016/j.chom.2011.04.009.
- 55. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour[J]. Nat Rev Neurosci, 2012, 13(10): 701-712. DOI: 10.1038/nrn3346.
- 56. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder[J]. Brain Behav Immun, 2015, 48: 186-194. DOI: 10.1016/j.bbi.2015.03.016.
- 57. Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry, 2016, 21(6): 786-796. DOI: 10.1038/mp.2016.44.
- 58. Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351): 570-575. DOI: 10.1126/science.aam9949.
- 59. Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. J Nutr, 2009, 139(9): 1619-1625. DOI: 10.3945/jn.109.104638.
- 60. Schroeder FA, Lin CL, Crusio WE, et al. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse[J]. Biol Psychiatry, 2007, 62(1): 55-64. DOI: 10.1016/j.biopsych.2006.06.036.
- 61. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. DOI: 10.1016/j.cell.2015.02.047.
- 62. Lund ML, Egerod KL, Engelstoft MS, et al. Enterochromaffin 5-HT cells - A major target for GLP-1 and gut microbial metabolites[J]. Mol Metab, 2018, 11: 70-83. DOI: 10.1016/j.molmet.2018.03.004.
- 63. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434. DOI: 10.1038/nature06005.
- 64. Li S, Shah NP. Characterization, anti-inflammatory and antiproliferative activities of natural and sulfonated exo-polysaccharides from streptococcus thermophilus ASCC 1275[J]. J Food Sci, 2016, 81(5): 1167-1176. DOI: 10.1111/1750-3841.13276.
- 65. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression[J]. Nat Microbiol, 2019, 4(4): 623-632. DOI: 10.1038/s41564-018-0337-x.
- 66. Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist[J]. Proc Natl Acad Sci USA, 2003, 100(10): 5986-5990. DOI: 10.1073/pnas.1035999100.
- 67. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation[J]. Cell, 2010, 140(6): 845-858. DOI: 10.1016/j.cell.2010.02.021.
- 68. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI: 10.1126/science.1241165.
- 69. Ivanov, II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485-498. DOI: 10.1016/j.cell.2009.09.033.
- 70. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. DOI: 10.1126/science.1198469.
- 71. Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses[J]. Immunity, 2011, 34(5): 794-806. DOI: 10.1016/j.immuni.2011.03.021.
- 72. O'Mahony SM, Clarke G, Borre YE, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis[J]. Behav Brain Res, 2015, 277: 32-48. DOI: 10.1016/j.bbr.2014.07.027.
- 73. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J/OL]. Sci Transl Med, 2014, 6(263): 263ra158[2014-11-19]. https://pubmed.ncbi.nlm.nih.gov/25411471/. DOI: 10.1126/scitranslmed.3009759.
- 74. Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface[J]. Proc Natl Acad Sci USA, 2008, 105(52): 20858-20863. DOI: 10.1073/pnas.0808723105.
- 75. Jänig W. Sympathetic nervous system and inflammation: a conceptual view[J]. Auton Neurosci, 2014, 182: 4-14. DOI: 10.1016/j.autneu.2014.01.004.
- 76. Liu YZ, Wang YX, Jiang CL. Inflammation: the common pathway of stress-related diseases[J/OL]. Front Hum Neurosci, 2017, 11: 316[2017-06-20]. https://pubmed.ncbi.nlm.nih.gov/28676747/. DOI: 10.3389/fnhum.2017.00316.
- 77. Meng T, Nie L, Wang Y. Role of CD4+ T cell-derived cytokines in the pathogenesis of uveitis[J/OL]. Clin Exp Med, 2025, 25(1): 49[2025-02-05]. https://pubmed.ncbi.nlm.nih.gov/39909966/. DOI: 10.1007/s10238-025-01565-7.
- 78. Rohleder N. Stress and inflammation - The need to address the gap in the transition between acute and chronic stress effects[J]. Psychoneuroendocrinology, 2019, 105: 164-171. DOI: 10.1016/j.psyneuen.2019.02.021.
- 79. Walscheid K, Neekamp L, Heiligenhaus A, et al. Increased circulating proinflammatory T lymphocytes in children with different forms of anterior uveitis: results from a pilot study[J]. Ocul Immunol Inflamm, 2019, 27(5): 788-797. DOI: 10.1080/09273948.2018.1467464.
- 80. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell, 1997, 89(4): 587-596. DOI: 10.1016/s0092-8674(00)80240-8.
- 81. Fortini S, Costanzo E, Rellini E, et al. Use of the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) questionnaires for clinical decision-making and psychological referral in ophthalmic care: a multicentre observational study[J/OL]. BMJ Open, 2024, 14(1): e075141[2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/38238181/. DOI: 10.1136/bmjopen-2023-075141.