1. |
惠延年. 增生性玻璃体视网膜病变: 带入21世纪的课题[J]. 中华眼底病杂志,1999,15(2): 67-68.
|
2. |
Friedlander M. Fibrosis and diseases of the eye[J]. J Clin Invest,2007,117(3): 576-586.
|
3. |
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis[J]. J Clin Invest,2003,112(12): 1776-1784.
|
4. |
Saika S, Kono-Saika S, Tanaka T, et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice[J]. Lab Invest,2004,84(10): 1245-1258.
|
5. |
Sippy BD, Hofman FM, He S, et al. SV40-immortalized and primary cultured human retinal pigment epithelial cells share similar patterns of cytokine-receptor expression and cytokine responsiveness[J]. Curr Eye Res,1995,14(6): 495-503.
|
6. |
Heldin CH, Miyazono K, Ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins[J]. Nature,1997,390(6659): 465-471.
|
7. |
Itoh Y, Kimoto K, Imaizumi M, et al. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type Ⅰ collagen induced by TGF-β2 in human retinal pigment epithelial cells[J]. Exp Eye Res,2007,84(3): 464-472.
|
8. |
Lee J, Ko M, Joo CK. Rho plays a key role in TGF-beta1-induced cytoskeletal rearrangement in human retinal pigment epithelium[J]. J Cell Physiol,2008,216(2): 520-526.
|
9. |
Lee SC, Kwon OW, Seong GJ, et al. Epitheliomesenchymal transdifferentiation of cultured RPE cells[J]. Ophthalmic Res,2001,33(2): 80-86.
|
10. |
Parapuram SK, Chang B, Li L, et al. Differential Effects of TGF and vitreous on the transformation of retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci,2009,50(12): 5965-5974.
|
11. |
Cheng HC, Ho TC, Chen SL, et al. Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells[J]. Mol Vis,2008,14: 95-104.
|
12. |
Kita T, Hata Y, Arita R, et al. Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a therapeutic target[J]. Proc Natl Acad Sci USA,2008,105(45):17504-17509.
|
13. |
Kawahara S, Hata Y, Kita T, et al. Potent inhibition of cicatricial contraction in proliferative vitreoretinal diseases by statins[J]. Diabetes,2008,57(10):2784-2793.
|
14. |
Chen X, Xiao W, Liu X, et al. Blockade of Jagged/Notch pathway abrogates transforming growth factor beta2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells[J]. Curr Mol Med,2014,14(4):523-534.
|
15. |
Chen X, Xiao W, Wang W, et al. The complex interplay between ERK1/2, TGFbeta/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells[J/OL]. PLoS One,2014, 9(5): 96365[2014-05-02] .http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096365.
|
16. |
Lee J, Moon HJ, Lee JM, et al. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-β-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells[J]. J Biol Chem,2010,285(34): 26618-26627.
|
17. |
Tsapara A, Luthert P, Greenwood J, et al. The RhoA activator GEF-H1/Lfc is a transforming growth factor-β target gene and effector that regulates α-smooth muscle actin expression and cell migration[J]. Mol Biol Cell,2010,21(6): 860-870.
|
18. |
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest,2009,119(6): 1420-1428.
|
19. |
Zhu J, Nguyen D, Ouyang H, et al. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19[J].Int J Ophthalmol, 2013,6(1): 8-14.
|
20. |
Limb G, Alam A, Earley O, et al. Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy[J]. Curr Eye Res,1994,13(11): 791-798.
|
21. |
Yang P. Human RPE expression of cell survival factors[J]. Invest Ophthalmol Vis Sci,2005,46(5): 1755-1764.
|
22. |
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators[J]. Nat Rev Mol Cell Biol,2003,4(1): 33-45.
|
23. |
Takahashi E, Haga A, Tanihara H. Merlin regulates epithelial-to-mesenchymal transition of ARPE-19 cells via TAK1-p38MAPK-mediated activation[J]. Invest Ophthalmol Vis Sci,2015,56(4): 2449-2458.
|
24. |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2): 281-297.
|
25. |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell,2009,136(2): 215-233.
|
26. |
Li M, Li H, Liu X, et al. MicroRNA-29b regulates TGF-beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells by targeting AKT2[J/OL]. Exp Cell Res,2014[2014-09-28]. http://www.sciencedirect.com/science/article/pii/S0014482714004315.[published online ahead of print].
|
27. |
Wang FE, Zhang C, Maminishkis A, et al. MicroRNA-204/211 alters epithelial physiology[J]. FASEB J,2010,24(5): 1552-1571.
|
28. |
Adijanto J, Castorino JJ, Wang ZX, et al. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression[J]. J Biol Chem,2012,287(24): 20491-20503.
|