Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.
Citation:
CHENHao, CHENZhaoxue, YUHaizhong. Research on Fast Implementation Method of Image Gaussian RBF Interpolation Based on CUDA. Journal of Biomedical Engineering, 2014, 31(2): 237-244. doi: 10.7507/1001-5515.20140045
Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. |
许为华,尹学松.医学图像插值算法的研究[J].计算机仿真,2006,23(1):111-114.
|
2. |
缪斌和,邓元木,黄斐增,等.基于对应点匹配的断层图像三维插值方法[J].中国医学物理学杂志,2000,17(1):14-16.
|
3. |
黄海赟,戚飞虎,陈剑,等.基于小波的医学图像插值[J].自动化学报,2002,28(5):722-728.
|
4. |
缪报通,陈发来.径向基函数神经网络在散乱数据插值中的应用[J].中国科学技术大学学报,2001,31(2):137-141.
|
5. |
FORNBERG B,LARSSON E,FLYER N.Stable computations with Gaussian Radial Basis Functions in 2-D[J].SIAM Journal of Scientific Computing,2011,33(2):869-892.
|
6. |
LIAO W H,AGGARWAL J K.Curve and surface interpolation using rational radial basis functions[C]//ICPR'96 Proceedings of the International Conference on Pattern Recognition,1996 IEEE,7472,1996:9-13.
|
7. |
桂叶晨,冯前进,刘磊,等.基于CUDA的双三次B样条缩放方法[J].计算机工程与应用,2009,45(1):183-184.
|
8. |
吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):3-5.
|
9. |
张健.方程组的迭代法求解在GPU上的实现[J].电子器件,2010,33(6):767-768.
|
10. |
杨梅,李志民,曹大勇.CUDA架构下大规模稠密线性方程组的并行求解[J].计算机工程与应用,2011,47(32):28-30.
|
11. |
米兰,许海波.基于边缘提取的图像拼接[J].计算机及应用研究,2007,24(5):318-320.
|
- 1. 许为华,尹学松.医学图像插值算法的研究[J].计算机仿真,2006,23(1):111-114.
- 2. 缪斌和,邓元木,黄斐增,等.基于对应点匹配的断层图像三维插值方法[J].中国医学物理学杂志,2000,17(1):14-16.
- 3. 黄海赟,戚飞虎,陈剑,等.基于小波的医学图像插值[J].自动化学报,2002,28(5):722-728.
- 4. 缪报通,陈发来.径向基函数神经网络在散乱数据插值中的应用[J].中国科学技术大学学报,2001,31(2):137-141.
- 5. FORNBERG B,LARSSON E,FLYER N.Stable computations with Gaussian Radial Basis Functions in 2-D[J].SIAM Journal of Scientific Computing,2011,33(2):869-892.
- 6. LIAO W H,AGGARWAL J K.Curve and surface interpolation using rational radial basis functions[C]//ICPR'96 Proceedings of the International Conference on Pattern Recognition,1996 IEEE,7472,1996:9-13.
- 7. 桂叶晨,冯前进,刘磊,等.基于CUDA的双三次B样条缩放方法[J].计算机工程与应用,2009,45(1):183-184.
- 8. 吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):3-5.
- 9. 张健.方程组的迭代法求解在GPU上的实现[J].电子器件,2010,33(6):767-768.
- 10. 杨梅,李志民,曹大勇.CUDA架构下大规模稠密线性方程组的并行求解[J].计算机工程与应用,2011,47(32):28-30.
- 11. 米兰,许海波.基于边缘提取的图像拼接[J].计算机及应用研究,2007,24(5):318-320.