• School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
TIANFuying, Email: fuying1020@sina.com
Export PDF Favorites Scan Get Citation

We proposed a multi-resolution-wavelet-transform based method to extract brainstem auditory evoked potential (BAEP) from the background noise and then to identify its characteristics correctly. Firstly we discussed the mother wavelet and wavelet transform algorithm and proved that bi-orthogonal wavelet bior5.5 and stationary discrete wavelet transform (SWT) were more suitable for BAEP signals. The correlation analysis of D6 scale wavelet coefficients between single trails and the ensemble average of all trails showed that the trails with good correlation (> 0.4) had higher signal-to-noise ratio, so that we could get a clear BAEP from a few trails by an average and wavelet filter method. Finally, we used this method to select desirable trails, extracted BAEP from every 10 trails and calculated theⅠ-Ⅴinter-waves' latency. The results showed that this strategy of trail selection was efficient. This method can not only achieve better de-noising effect, but also greatly reduce the stimulation time needed as well.

Citation: TIANFuying, SUNYing. Feature Extraction of Brainstem Auditory Evoked Potential Based on Wavelet Multi-resolution Analysis. Journal of Biomedical Engineering, 2015, 32(3): 514-519. doi: 10.7507/1001-5515.20150094 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Study on Steady State Visual Evoked Potential Target Detection Based on Two-dimensional Ensemble Empirical Mode Decomposition
  • Next Article

    Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern