• School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China;
WANG Yuanjun, Email: yjusst@126.com
Export PDF Favorites Scan Get Citation

Oral teeth image segmentation plays an important role in teeth orthodontic surgery and implant surgery. As the tooth roots are often surrounded by the alveolar, the molar’s structure is complex and the inner pulp chamber usually exists in tooth, it is easy to over-segment or lead to inner edges in teeth segmentation process. In order to further improve the segmentation accuracy, a segmentation algorithm based on local Gaussian distribution fitting and edge detection is proposed to solve the above problems. This algorithm combines the local pixels’ variance and mean values, which improves the algorithm’s robustness by incorporating the gradient information. In the experiment, the root is segmented precisely in cone beam computed tomography (CBCT) teeth images. Segmentation results by the proposed algorithm are then compared with the classical algorithms’ results. The comparison results show that the proposed method can distinguish the root and alveolar around the root. In addition, the split molars can be segmented accurately and there are no inner contours around the pulp chamber.

Citation: LIU Shiwei, WANG Yuanjun. A tooth cone beam computer tomography image segmentation method based on the local Gaussian distribution fitting. Journal of Biomedical Engineering, 2019, 36(2): 291-297, 305. doi: 10.7507/1001-5515.201709042 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Unconstrained detection of ballistocardiogram and heart rate based on vibration acceleration
  • Next Article

    The study on extraction method of pulse rate variability in daily unsupervised state