- 1. Teaching and Research Section of Dental Materials, Stomatologic Hospital & College, Anhui Medical University, Hefei 230032, P.R.China;
- 2. Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, P.R.China;
Despite the continuous improvement in perioperative use of antibiotics and aseptic techniques, the incidence of infection continues to rise as the need for surgery increasing and brings great challenges to orthopedic surgery. The rough or porous structure of the prosthesis provides an excellent place for bacterial adhesion, proliferation and biofilm formation, which is the main cause of infection. Traditional antibiotic therapy and surgical debridement are difficult to determine whether the infected focus have been removed completely and whether the infection will recur. In recent years, nanotechnology has shown obvious advantages in biomaterials and drug delivery. Nano drug carriers can effectively achieve local antimicrobial therapy, prevent surgical infection by local sustained drug release or intelligent controlled drug release under specific stimuli, and reduce the toxic side effects of drugs. The unique advantages of nanotechnology provide new ideas and options for the prevention and treatment of periprosthetic infection. At present, the application of nano-technology in the prevention and treatment of infection can be divided into the addition of nano-drug-loaded materials to prosthesis materials, the construction of drug-loaded nano-coatings on the surface of prosthesis, the perfusable nano-antimicrobial drug carriers, and the stimulation-responsive drug controlled release system. This article reviews the methods of infection prevention and treatment in orthopaedic surgery, especially the research status of nanotechnology in the prevention and treatment of periprosthetic infection.
Citation: PAN Zhenyao, WANG Yan, LI Jiaojiao, CHEN Jialong. Application of nanodrug carriers in the prevention and treatment of infection around orthopedic prosthesis. Journal of Biomedical Engineering, 2019, 36(5): 862-869, 878. doi: 10.7507/1001-5515.201807032 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. | Wyatt M C, Beswick A, Kunutsor S, et al. The alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of periprosthetic infection: a systematic review and meta-analysis. J Bone Joint Surg AM, 2016, 98(12): 992-1000. |
2. | Poss R, Thornhill T S, Ewald F C, et al. Factors influencing the incidence and outcome of infection following total joint arthroplasty. Clin Orthop Relat Res, 1984(182): 117-126. |
3. | 郑臣校, 吴治森, 刘思景, 等. 骨科感染创面修复研究进展. 现代中西医结合杂志, 2015, 24(16): 1815-1818. |
4. | 陈志, 周宗科. 髋、膝关节置换术后假体周围感染的诊治进展. 实用骨科杂志, 2017, 23(3): 247-251. |
5. | Rafii F, Hart M E. Antimicrobial resistance in clinically important biofilms. World J Pharmacol, 2015, 4(1): 31-46. |
6. | 姚泽明, 赖健昆, 陈祥, 等. 耐甲氧西林金黄色葡萄球菌生物膜体外模型的构建及其成膜规律. 广东医学, 2017, 38(23): 3577-3579. |
7. | 孙永, 周新社. 人工关节假体感染细菌生物膜诊断的研究进展. 安徽医药, 2017, 21(9): 1570-1574. |
8. | 张青, 马慧娜. 大肠埃希菌生物膜形成与耐药机制的研究进展. 中国抗生素杂志, 2018, 43(5): 497-501. |
9. | 邵正海, 张玉发, 徐卫东. 有效足量抗生素配合清创手术治疗假体相关感染保留置入假体的疗效分析. 中国骨与关节损伤杂志, 2016, 31(4): 349-352. |
10. | 敖薪, 王娟. 抗生素锁与肌注给药在治疗家兔中心静脉导管相关感染模型中的效果差异. 中国感染控制杂志, 2017, 16(10): 920-924. |
11. | 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展. 化工学报, 2018, 69(1): 128-140. |
12. | Paz E, Sanz-Ruiz P, Abenojar J, et al. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: comparative" in vitro” study of the influence of vancomycin and cefazolin. J Arthroplasty, 2015, 30(8): 1423-1429. |
13. | Ficklin M G, Kunkel K A, Suber J T, et al. Biomechanical evaluation of polymethyl methacrylate with the addition of various doses of cefazolin, vancomycin, gentamicin, and silver microparticles. Vet Comp Orthopaed, 2016, 29(5): 394-401. |
14. | Arias P P, Tafin U F, Bétrisey B, et al. Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury, 2015, 46(2): 249-253. |
15. | Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol, 2012(211): 121-133. |
16. | Dunne N, Hill J, McAfeel P, et al. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: Effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop, 2007, 78(6): 774-785. |
17. | Ayre W N, Birchall J C, Evans S L. A novel liposomal drug delivery system for PMMA bone cements. J Biomed Mater Res B Appl Biomater, 2016, 104(8): 1510-1524. |
18. | Shen S C, Ng W K, Dong Y C, et al. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C, 2016, 58: 233-241. |
19. | Agnihotri S, Pathak R, Jha D, et al. Synthesis and antimicrobial activity of aminoglycoside-conjugated silica nanoparticles against clinical and resistant bacteria. New J Chem, 2015, 39(9): 6746-6755. |
20. | Mosselhy D A, He W, Hynönen U, et al. Silica-gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. Int J Nanomedicine, 2018, 13: 7939-7957. |
21. | Mondal S, Dorozhkin S V, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(4): e1504. |
22. | Brennan S A, Ní Fhoghlú C, Devitt B, et al. Silver nanoparticles and their orthopaedic applications. Bone Joint J, 2015, 97(5): 582-589. |
23. | Nam K Y. Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. J Adv Prosthodont, 2017, 9(3): 217-223. |
24. | Gonzalez-Sanchez M I, Perni S, Tommasi G, et al. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl, 2015, 50: 332-340. |
25. | Li Bingyun, Jiang Bingbing, Boyce B M, et al. Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials, 2009, 30(13): 2552-2558. |
26. | Ordikhani F, Zustiak S P, Simchi A. Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies. JOM, 2016, 68(4): 1100-1108. |
27. | Jia Zhaojun, Xiu Peng, Li Ming, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 2016, 75: 203-222. |
28. | Zeng Zhanpeng, He Xian, Tan Benqian, et al. Titanium oxide nanotubes embedded with silver dioxide nanoparticles for staphylococcus aureus infections after prosthetic joint replacement in animal models. Int J Clin Exp Med, 2018, 11(7): 7392-7399. |
29. | Wei Baogang, Shi Zhanjun, Xiao Jun, et al. In vivo and in vitro antibacterial effect of nano-structured titanium coating incorporated with silver oxide nanoparticles. J Biomater Tissue Eng, 2017, 7(5): 418-425. |
30. | Kumar T S S, Madhumathi K. Antibiotic delivery by nanobioceramics. Ther Deliv, 2016, 7(8): 573-588. |
31. | Kose N, Caylak R, Peksen C, et al. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury, 2016, 47(2): 320-324. |
32. | Li Bingyun, Jiang Bingbing, Dietz M J, et al. Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res, 2010, 28(1): 48-54. |
33. | Xu Xiao, Wang Lixin, Luo Zuyuan, et al. Facile and versatile strategy for construction of anti-inflammatory and antibacterial surfaces with polydopamine-mediated liposomes releasing dexamethasone and minocycline for potential implant applications. ACS Appl Mater Interfaces, 2017, 9(49): 43300-43314. |
34. | Nandi S K, Bandyopadhyay S, Das P A, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv, 2016, 34(8): 1305-1317. |
35. | Zhou Yan, Liu Shiqing, Peng Hao, et al. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol, 2015, 28(1): 34-43. |
36. | Hibbitts A, O'Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials (Basel), 2018, 11(2): 321. |
37. | Sande L, Sanchez M, Montes J, et al. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J Antimicrob Chemother, 2012, 67(9): 2191-2194. |
38. | Liu Junli, Wang Zhonglan, Li Fubing, et al. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci, 2015, 10(3): 212-222. |
39. | Hsu C Y, Yang S C, Sung C T, et al. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine, 2017, 12: 8227-8238. |
40. | Liu Xiaowei, Li Zhan, Wang Xiaodong, et al. Novel antimicrobial peptide-modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine, 2016, 11: 6781-6794. |
41. | Cui Haiying, Li Wei, Li Changzhu, et al. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling, 2016, 32(2): 215-225. |
42. | Posadowska U, Brzychczy-Wloch M, Pamula E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech, 2015, 17(3): 41-48. |
43. | Dos Santos Ferreira D, Boratto F A, Cardoso V N, et al. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis. Int J Nanomedicine, 2015, 10: 2441-2450. |
44. | Liu Xinming, Ren Ke, Wu Geoffrey, et al. Preparation and evaluation of biomineral-binding antibiotic liposomes// Lu Wanliang, Qi Xiangrong. Liposome-based drug delivery systems. Biomaterial engineering. Berlin, Heidelberg: Springer, 2017: 1-16. |
45. | Cong Yingying, Quan Changyun, Liu Meiqing, et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J Biomater Sci Polym Ed, 2015, 26(11): 629-643. |
46. | 赵欣宇, 陈廖斌, 谭杨, 等. 利福平在人工关节假体周围感染治疗中的应用. 中华骨科杂志, 2016, 36(19): 1263-1267. |
47. | Martínez-Carmona M, Gun’ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 2018, 8(4): 268. |
48. | Shakibaie M, Forootanfar H, Golkari Y, et al. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Bio, 2015, 29: 235-241. |
49. | Bandara H, Nguyen D, Mogarala S, et al. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling, 2015, 31(5): 443-457. |
50. | Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 2015, 7(3): 219-242. |
51. | Giannousi K, Sarafidis G, Mourdikoudis S, et al. Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction. Inorg Chem, 2014, 53(18): 9657-9666. |
52. | Singh R, Shedbalkar U U, Wadhwani S A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol, 2015, 99(11): 4579-4593. |
53. | McNamara K, Tofail S A. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys, 2015, 17(42): 27981-27995. |
54. | Ghaseminezhad S M, Shojaosadati S A, Meyer R L. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloid Surface B, 2018, 163: 192-200. |
55. | Brown J P, Morin S, Leslie W, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician, 2014, 60(4): 324-333. |
56. | Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013, 12(11): 991-1003. |
57. | Yang Shengbing, Han Xiuguo, Yang Ying, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces, 2018, 10(17): 14299-14311. |
58. | Wang Ying, Zhao Qinfu, Han Ning, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med, 2015, 11(2): 313-327. |
59. | Lavrador P, Gaspar V M, Mano J F. Stimuli-responsive nanocarriers for delivery of bone therapeutics–Barriers and progresses. J Control Release, 2018, 273: 51-67. |
60. | Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016, 45(5): 1457-1501. |
61. | Dong Yiwen, Ye Hui, Liu Yi, et al. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control peri-implant infection. Colloid Surface B, 2017, 158: 127-136. |
62. | Huang W, Tsui C, Tang C, et al. Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos Part B-Eng, 2017, 121: 83-91. |
63. | Penner M J, Masri B A, Duncan C P. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplasty, 1996, 11(8): 939-944. |
64. | Tian Yefei, Zheng Jin, Tang Xiaoling, et al. Near-infrared light-responsive nanogels with diselenide-cross-linkers for on-demand degradation and triggered drug release. Part Part Syst Char, 2015, 32(5): 547-551. |
65. | Hu Quanyin, Katti P S, Gu Zhen. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21): 12273-12286. |
66. | Liu Dong, Yang Fang, Xiong Fei, et al. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9): 1306-1323. |
67. | Liang Jing, Liu Bin. ROS-responsive drug delivery systems. Bioeng Transl Med, 2016, 1(3): 239-251. |
- 1. Wyatt M C, Beswick A, Kunutsor S, et al. The alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of periprosthetic infection: a systematic review and meta-analysis. J Bone Joint Surg AM, 2016, 98(12): 992-1000.
- 2. Poss R, Thornhill T S, Ewald F C, et al. Factors influencing the incidence and outcome of infection following total joint arthroplasty. Clin Orthop Relat Res, 1984(182): 117-126.
- 3. 郑臣校, 吴治森, 刘思景, 等. 骨科感染创面修复研究进展. 现代中西医结合杂志, 2015, 24(16): 1815-1818.
- 4. 陈志, 周宗科. 髋、膝关节置换术后假体周围感染的诊治进展. 实用骨科杂志, 2017, 23(3): 247-251.
- 5. Rafii F, Hart M E. Antimicrobial resistance in clinically important biofilms. World J Pharmacol, 2015, 4(1): 31-46.
- 6. 姚泽明, 赖健昆, 陈祥, 等. 耐甲氧西林金黄色葡萄球菌生物膜体外模型的构建及其成膜规律. 广东医学, 2017, 38(23): 3577-3579.
- 7. 孙永, 周新社. 人工关节假体感染细菌生物膜诊断的研究进展. 安徽医药, 2017, 21(9): 1570-1574.
- 8. 张青, 马慧娜. 大肠埃希菌生物膜形成与耐药机制的研究进展. 中国抗生素杂志, 2018, 43(5): 497-501.
- 9. 邵正海, 张玉发, 徐卫东. 有效足量抗生素配合清创手术治疗假体相关感染保留置入假体的疗效分析. 中国骨与关节损伤杂志, 2016, 31(4): 349-352.
- 10. 敖薪, 王娟. 抗生素锁与肌注给药在治疗家兔中心静脉导管相关感染模型中的效果差异. 中国感染控制杂志, 2017, 16(10): 920-924.
- 11. 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展. 化工学报, 2018, 69(1): 128-140.
- 12. Paz E, Sanz-Ruiz P, Abenojar J, et al. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: comparative" in vitro” study of the influence of vancomycin and cefazolin. J Arthroplasty, 2015, 30(8): 1423-1429.
- 13. Ficklin M G, Kunkel K A, Suber J T, et al. Biomechanical evaluation of polymethyl methacrylate with the addition of various doses of cefazolin, vancomycin, gentamicin, and silver microparticles. Vet Comp Orthopaed, 2016, 29(5): 394-401.
- 14. Arias P P, Tafin U F, Bétrisey B, et al. Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury, 2015, 46(2): 249-253.
- 15. Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol, 2012(211): 121-133.
- 16. Dunne N, Hill J, McAfeel P, et al. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: Effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop, 2007, 78(6): 774-785.
- 17. Ayre W N, Birchall J C, Evans S L. A novel liposomal drug delivery system for PMMA bone cements. J Biomed Mater Res B Appl Biomater, 2016, 104(8): 1510-1524.
- 18. Shen S C, Ng W K, Dong Y C, et al. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C, 2016, 58: 233-241.
- 19. Agnihotri S, Pathak R, Jha D, et al. Synthesis and antimicrobial activity of aminoglycoside-conjugated silica nanoparticles against clinical and resistant bacteria. New J Chem, 2015, 39(9): 6746-6755.
- 20. Mosselhy D A, He W, Hynönen U, et al. Silica-gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. Int J Nanomedicine, 2018, 13: 7939-7957.
- 21. Mondal S, Dorozhkin S V, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(4): e1504.
- 22. Brennan S A, Ní Fhoghlú C, Devitt B, et al. Silver nanoparticles and their orthopaedic applications. Bone Joint J, 2015, 97(5): 582-589.
- 23. Nam K Y. Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. J Adv Prosthodont, 2017, 9(3): 217-223.
- 24. Gonzalez-Sanchez M I, Perni S, Tommasi G, et al. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl, 2015, 50: 332-340.
- 25. Li Bingyun, Jiang Bingbing, Boyce B M, et al. Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials, 2009, 30(13): 2552-2558.
- 26. Ordikhani F, Zustiak S P, Simchi A. Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies. JOM, 2016, 68(4): 1100-1108.
- 27. Jia Zhaojun, Xiu Peng, Li Ming, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 2016, 75: 203-222.
- 28. Zeng Zhanpeng, He Xian, Tan Benqian, et al. Titanium oxide nanotubes embedded with silver dioxide nanoparticles for staphylococcus aureus infections after prosthetic joint replacement in animal models. Int J Clin Exp Med, 2018, 11(7): 7392-7399.
- 29. Wei Baogang, Shi Zhanjun, Xiao Jun, et al. In vivo and in vitro antibacterial effect of nano-structured titanium coating incorporated with silver oxide nanoparticles. J Biomater Tissue Eng, 2017, 7(5): 418-425.
- 30. Kumar T S S, Madhumathi K. Antibiotic delivery by nanobioceramics. Ther Deliv, 2016, 7(8): 573-588.
- 31. Kose N, Caylak R, Peksen C, et al. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury, 2016, 47(2): 320-324.
- 32. Li Bingyun, Jiang Bingbing, Dietz M J, et al. Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res, 2010, 28(1): 48-54.
- 33. Xu Xiao, Wang Lixin, Luo Zuyuan, et al. Facile and versatile strategy for construction of anti-inflammatory and antibacterial surfaces with polydopamine-mediated liposomes releasing dexamethasone and minocycline for potential implant applications. ACS Appl Mater Interfaces, 2017, 9(49): 43300-43314.
- 34. Nandi S K, Bandyopadhyay S, Das P A, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv, 2016, 34(8): 1305-1317.
- 35. Zhou Yan, Liu Shiqing, Peng Hao, et al. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol, 2015, 28(1): 34-43.
- 36. Hibbitts A, O'Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials (Basel), 2018, 11(2): 321.
- 37. Sande L, Sanchez M, Montes J, et al. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J Antimicrob Chemother, 2012, 67(9): 2191-2194.
- 38. Liu Junli, Wang Zhonglan, Li Fubing, et al. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci, 2015, 10(3): 212-222.
- 39. Hsu C Y, Yang S C, Sung C T, et al. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine, 2017, 12: 8227-8238.
- 40. Liu Xiaowei, Li Zhan, Wang Xiaodong, et al. Novel antimicrobial peptide-modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine, 2016, 11: 6781-6794.
- 41. Cui Haiying, Li Wei, Li Changzhu, et al. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling, 2016, 32(2): 215-225.
- 42. Posadowska U, Brzychczy-Wloch M, Pamula E. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech, 2015, 17(3): 41-48.
- 43. Dos Santos Ferreira D, Boratto F A, Cardoso V N, et al. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis. Int J Nanomedicine, 2015, 10: 2441-2450.
- 44. Liu Xinming, Ren Ke, Wu Geoffrey, et al. Preparation and evaluation of biomineral-binding antibiotic liposomes// Lu Wanliang, Qi Xiangrong. Liposome-based drug delivery systems. Biomaterial engineering. Berlin, Heidelberg: Springer, 2017: 1-16.
- 45. Cong Yingying, Quan Changyun, Liu Meiqing, et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J Biomater Sci Polym Ed, 2015, 26(11): 629-643.
- 46. 赵欣宇, 陈廖斌, 谭杨, 等. 利福平在人工关节假体周围感染治疗中的应用. 中华骨科杂志, 2016, 36(19): 1263-1267.
- 47. Martínez-Carmona M, Gun’ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 2018, 8(4): 268.
- 48. Shakibaie M, Forootanfar H, Golkari Y, et al. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Bio, 2015, 29: 235-241.
- 49. Bandara H, Nguyen D, Mogarala S, et al. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling, 2015, 31(5): 443-457.
- 50. Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 2015, 7(3): 219-242.
- 51. Giannousi K, Sarafidis G, Mourdikoudis S, et al. Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction. Inorg Chem, 2014, 53(18): 9657-9666.
- 52. Singh R, Shedbalkar U U, Wadhwani S A. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol, 2015, 99(11): 4579-4593.
- 53. McNamara K, Tofail S A. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys, 2015, 17(42): 27981-27995.
- 54. Ghaseminezhad S M, Shojaosadati S A, Meyer R L. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloid Surface B, 2018, 163: 192-200.
- 55. Brown J P, Morin S, Leslie W, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician, 2014, 60(4): 324-333.
- 56. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013, 12(11): 991-1003.
- 57. Yang Shengbing, Han Xiuguo, Yang Ying, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces, 2018, 10(17): 14299-14311.
- 58. Wang Ying, Zhao Qinfu, Han Ning, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med, 2015, 11(2): 313-327.
- 59. Lavrador P, Gaspar V M, Mano J F. Stimuli-responsive nanocarriers for delivery of bone therapeutics–Barriers and progresses. J Control Release, 2018, 273: 51-67.
- 60. Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016, 45(5): 1457-1501.
- 61. Dong Yiwen, Ye Hui, Liu Yi, et al. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control peri-implant infection. Colloid Surface B, 2017, 158: 127-136.
- 62. Huang W, Tsui C, Tang C, et al. Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos Part B-Eng, 2017, 121: 83-91.
- 63. Penner M J, Masri B A, Duncan C P. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplasty, 1996, 11(8): 939-944.
- 64. Tian Yefei, Zheng Jin, Tang Xiaoling, et al. Near-infrared light-responsive nanogels with diselenide-cross-linkers for on-demand degradation and triggered drug release. Part Part Syst Char, 2015, 32(5): 547-551.
- 65. Hu Quanyin, Katti P S, Gu Zhen. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21): 12273-12286.
- 66. Liu Dong, Yang Fang, Xiong Fei, et al. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9): 1306-1323.
- 67. Liang Jing, Liu Bin. ROS-responsive drug delivery systems. Bioeng Transl Med, 2016, 1(3): 239-251.