- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China;
Heart failure is one kind of cardiovascular disease with high risk and high incidence. As an effective treatment of heart failure, artificial heart is gradually used in clinical treatment. Blood compatibility is an important parameter or index of artificial heart, and how to evaluate it through hemodynamic design and in vitro hemolysis test is a research hotspot in the industry. This paper first reviews the research progress in hemodynamic optimization and in vitro hemolysis evaluation of artificial heart, and then introduces the research achievements and progress of the team in related fields. The hemodynamic performance of the blood pump optimized in this paper can meet the needs of use. The normalized index of hemolysis obtained by in standard vitro hemolysis test is less than 0.1 g/100 L, which has good hemolysis performance in vitro. The optimization method described in this paper is suitable for most of the development of blood pump and can provide reference for related research work.
Citation: FU Minrui, GAO Bin, CHANG Yu, LIU Youjun. Application of hemodynamic optimization in the design of artificial heart. Journal of Biomedical Engineering, 2020, 37(6): 1000-1011. doi: 10.7507/1001-5515.202008080 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. | 卫生部心血管病防治研究中心. 中国心血管病报告. 北京: 中国大百科全书出版社, 2014. |
2. | 2007 Annual Report of the U.S. Organ procurement and transplantation network and the scientific registry of transplant recipients: transplant data 1997-2006. Rockville: Health Resources and Services Administration HSB, Division of Transplantation, 2007. |
3. | Loebe M, Soltero E, Thohan V, et al. New surgical therapies for heart failure. Curr Opin Cardiol, 2003, 18(3): 194-198. |
4. | Anastasiadis K. Mechanical support of circulatory system. Hellenic J Cardiol, 2003, 44: 341-347. |
5. | U.S National Library of Medicine. Thoratec HeartMate II Left Ventricular Assist System (LVAS) for destination therapy[P/OL]. (2005-07-21) [2020-08-31]. http://www.thoratec.com/patients-caregivers/about-heartmate II.aspx. |
6. | JarvikHeart. The Jarvik 2000®[ EB/OL]. [2020-08-31]. http://www.jarvikheart.com/basic.asp?id=23. |
7. | Methodisthealth. Methodist Health Care System: Methodist Health Care System Home Page. DeBakey VAD[EB/OL]. [2020-08-31]. http://www.methodisthealth.com. |
8. | Richenbacher W E, Pasini E, Farrar D J. Clinical update and transition to destination therapy for the MicroMed De Bakey VAD. Ann Thorac Surg, 2003, 75(2): S86. |
9. | Rose E A, Gelijns A C, Moskowitz A J, et al. Long-term use of a left ventricular assist device for end-stage heart failure. New Engl J Med, 2001, 345(20): 1435-1443. |
10. | Joyce D L, Crow S S, John R, et al. Mechanical circulatory support in patients with heart failure secondary to transposition of the great arteries. J Heart Lung Transplant, 2010, 29(11): 1302-1305. |
11. | Benton C R, Sayer G, Nair A P, et al. Left ventricular assist devices improve functional class without normalizing peak oxygen consumption. Asaio J, 2015, 61(3): 237-243. |
12. | Tarzia V, Buratto E, Bortolussi G, et al. Hemorrhage and thrombosis with different LVAD technologies: a matter of flow?. Ann Cardiothorac Surg, 2014, 3(6): 582-584. |
13. | Cheng A, Swartz M F, Massey H T. Impella to unload the left ventricle during peripheral extracorporeal membrane oxygenation. ASAIO J, 2013, 59(5): 533-536. |
14. | Riebandt J, Sandner S, Mahr S, et al. Minimally invasive thoratec heartmate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg, 2013, 96(3): 1094-1096. |
15. | Mackling T, Shah T, Dimas V, et al. Management of single-ventricle patients with Berlin Heart EXCOR Ventricular Assist Device: single-center experience. Artif Organs, 2012, 36(6): 555-559. |
16. | Karmonik C, Partovi S, Loebe M, et al. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J Thorac Cardiovasc Surg, 2014, 147(4): 1326-1333. |
17. | Karmonik C, Partovi S, Loebe M, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J, 2012, 58(6): 562-567. |
18. | Manoraj N, Urszula S, Michael I, et al. Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS One, 2014, 9(9): e92909. |
19. | Rommel J J, O’neill T J, Lishmanov A, et al. The role of heart failure pharmacotherapy after left ventricular assist device support. Heart Fail Clin, 2014, 10(4): 653-660. |
20. | Kurazumi H, Kubo M, Ohshima M, et al. The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One, 2011, 6(12): e28890. |
21. | 陈琛, 尹成科, 徐博翎, 等. 磁悬浮人工心脏电涡流位移传感线圈特性研究. 传感器与微系统, 2015, 34(11): 38-41. |
22. | 北京生物医学工程. 国内首款人工心脏获批上市. 北京生物医学工程, 2019, 38(5): 522. |
23. | 吴广辉, 蔺嫦燕, 陈琛, 等. 植入型心室辅助装置溶血及可植入性实验. 首都医科大学学报, 2011, 32(6): 806-810. |
24. | 许剑, 王伟, 张杰民, 等. 基于 CFD 的磁液悬浮式血泵优化设计. 液压与气动, 2013, 2: 61-63. |
25. | 吴广辉, 蔺嫦燕, 陈琛, 等. 磁悬浮离心式左心室辅助装置溶血实验研究. 北京工业大学学报, 2013, 39(10): 1596-1600. |
26. | 张锡文, 祝雪娇, 象天工, 等. 一种植入式中空微型轴流血泵: CN102019002A. 2010-12-03. |
27. | Huang F, Ruan X, Fu X. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation. ASAIO J, 2014, 60(3): 269-279. |
28. | Chang Y, Gao B. Modeling and identification of an intra-aorta pump. ASAIO J, 2010, 56(6): 504-509. |
29. | Zhu S D, Luo L, Yang B B, et al. Effects of an intra-ventricular assist device on the stroke volume of failing ventricle: Analysis of a mock circulatory system. Technol Health Care, 2018: S471-S479. |
30. | Chiu W C, Slepian M J, Bluestein D. Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations. Asaio J, 2014, 60(2): 237-240. |
31. | Thoennissen N H, Schneider M, Allroggen A, et al. High level of cerebral microembolization in patients supported with the DeBakey left ventricular assist device. J Thorac Cardiovasc Surg, 2005, 130(4): 1159-1166. |
32. | Wilhelm M J, Hammel D, Schmid C, et al. Long-term support of 9 patients with the DeBakey VAD for more than 200 days. J Thorac Cardiovasc Surg, 2005, 130(4): 1122-1129. |
33. | Schmid C, Jurmann M, Birnbaum D, et al. Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis. J Heart Lung Transplant, 2008, 27(3): 253-260. |
34. | Schmid C, Welp H, Klotz S, et al. Outcome of patients surviving to heart transplantation after being mechanically bridged for more than 100 days. J Heart Lung Transplant, 2003, 22(9): 1054-1058. |
35. | Wadowski P P, Steinlechner B, Zimpfer D, et al. Functional capillary impairment in patients with ventricular assist devices. Sci Rep, 2019, 9: 5909. |
36. | Chen Z, Mondal N K, Ding J, et al. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem, 2015: 93-101. |
37. | Hu Jingping, Mondal N K, Sorensen E N, et al. Platelet glycoprotein Ibα ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant, 2014, 33(1): 71-79. |
38. | Bounouib M, Benakrach H, Mohamed Es-Sadek Zeriab, et al. Numerical study of a new ventricular assist device. Artif Organs, 2020, 44(6): 604-610. |
39. | Yang X C, Zhang Y, Gui X M, et al. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump. Artif Organs, 2011, 35(10): 948-955. |
40. | Burgreen G W, Antaki J F, Wu J, et al. A computational and experimental comparison of two outlet stators for the Nimbus LVAD. Left ventricular assist device. ASAIO J, 1999, 45(4): 328-333. |
41. | Untaroiu A, Throckmorton A L, Patel S M, et al. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artif Organs, 2005, 29(7): 581-591. |
42. | Kang C, Huang Q, Li Y. Fluid dynamics aspects of miniaturized axial-flow blood pump. Biomed Mater Eng, 2014, 24(1): 723-729. |
43. | Zhu L, Zhang X, Yao Z. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics. Artif Organs, 2010, 34(3): 185-192. |
44. | Ghadimi B, Nejat A, Nourbakhsh S A, et al. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm. J Artif Organs, 2019, 22(1): 29-36. |
45. | Ghadimi B, Nejat A, Nourbakhsh S A, et al. Multi-objective genetic algorithm assisted by an artificial neural network metamodel for shape optimization of a centrifugal blood pump. Artif Organs, 2019, 43(5): E76-E93. |
46. | Leverett L B, Hellums J D, Alfrey C P, et al. Red blood cell damage by shear stress. Biophys J, 1972, 12(3): 257-273. |
47. | Taskin M E, Fraser K H, Zhang T, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J, 2012, 58(4): 363-372. |
48. | Blackshear P L Jr, Dorman F D, Steinbach J H. Some mechanical effects that influence hemolysis. Trans Am Soc Artif Intern Organs, 1965, 11(1): 112-117. |
49. | Giersiepen M, Wurzinger L J, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13(5): 300-306. |
50. | Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology, 1980, 17(1-2): 17-24. |
51. | Zhang T, Taskin M E, Fang H B, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs, 2015, 35(12): 1180-1186. |
52. | Ding J, Niu S, Chen Z, et al. Shear-induced hemolysis: species differences. Artif Organs, 2015, 39(9): 795-802. |
53. | Garon A, Farinas M I. Fast three-dimensional numerical hemolysis approximation. Artif Organs, 2015, 28(11): 1016-1025. |
54. | Rezaienia M A, Paul G, Avital E, et al. Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J, 2018, 64(5): 643-650. |
55. | Grigioni M, Daniele C, Morbiducci U, et al. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs, 2004, 28(5): 467-475. |
56. | Song X, Throckmorton A L, Wood H G, et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs, 2003, 27(10): 938-941. |
57. | Ding J, Chen Z, Niu S, et al. Quantification of shear-induced platelet activation: high shear stresses for short exposure time. Artif Organs, 2015, 39(7): 576-583. |
58. | Wang L, Chen Z, Zhang J, et al. Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method. Bull Math Biol, 2020, 82(7): 83. |
59. | Consolo F, Sheriff J, Gorla S, et al. High frequency components of hemodynamic shear stress profiles are a major determinant of shear-mediated platelet activation in therapeutic blood recirculating devices. Sci Rep, 2017, 7(1): 4994. |
60. | Zhang Q, Gao B, Chang Y. Computational analysis of intra-ventricular flow pattern under partial and full support of BJUT-II VAD. Med Sci Monit, 2017, 23: 1043-1054. |
61. | 张敏宏, 郭伟, 刘小平, 等. 国人升主动脉及主动脉弓的CT解剖研究. 中华普通外科杂志, 2009, 24(1): 42-44. |
62. | 吴晋宝, 王永珍. 胸部主动脉各段的外径及长度. 解剖学杂志, 1987(4): 333-34. |
63. | Nadiv Y, Vachbroit R, Gefen A, et al. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise. J Appl Biomech, 2012, 28(2): 139-147. |
64. | Paul R, Apel J, Klaus S, et al. Shear stress related blood damage in laminar Couette flow. Artif Organs, 2015, 27(6): 517-529. |
65. | Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol, 2008, 52(19): 1584-1588. |
66. | Bianco C M, Burch A E, Mawardi G, et al. The impact of hemolysis on outcomes of cardiogenic shock patients supported with impella percutaneous left ventricular assist device. J Card Fail, 2016: S110. |
67. | Vaidya V R, Desimone C V, Madhavan M, et al. Compatibility of electroanatomical mapping systems with a concurrent percutaneous axial flow ventricular assist device. J Cardiovasc Electrophysiol, 2014, 63(7): A308-A308. |
68. | Hayward C S. Red blood cells and left ventricular assist devices – A lifespan under stress. J Heart Lung Transplant, 2017, 36(6): 609-610. |
69. | ASTM F1841-97. Standard practice for assessment of hemolysis in continuous flow blood pumps. ASTM, 2017. |
70. | Spiliopoulos K, Giamouzis G, Karayannis G, et al. Current status of mechanical circulatory support: a systematic review. Cardiol Res Pract, 2012, 2012: 574198. |
71. | Kirklin J K, Naftel D C, Kormos R L, et al. The Fourth Intermacs Annual Report: 4,000 implants and counting. J Heart Lung Transplant, 2012, 31(2): 117-126. |
72. | 黑飞龙, 朱德明, 侯晓彤, 等. 2016 年中国心脏外科手术和体外循环数据白皮书. 中国体外循环杂志, 2017, 15(2): 65-67. |
73. | Horobin J T, Sabapathy S, Simmonds M J. Red blood cell tolerance to shear stress above and below the subhemolytic threshold. Biomech Model Mechanobiol, 2020, 19(3): 851-860. |
74. | Woelke E, Klein M, Mager I, et al. Miniaturized test loop for the assessment of blood damage by continuous-flow left-ventricular assist devices. Ann Biomed Eng, 2019, 48(2): 768-779. |
- 1. 卫生部心血管病防治研究中心. 中国心血管病报告. 北京: 中国大百科全书出版社, 2014.
- 2. 2007 Annual Report of the U.S. Organ procurement and transplantation network and the scientific registry of transplant recipients: transplant data 1997-2006. Rockville: Health Resources and Services Administration HSB, Division of Transplantation, 2007.
- 3. Loebe M, Soltero E, Thohan V, et al. New surgical therapies for heart failure. Curr Opin Cardiol, 2003, 18(3): 194-198.
- 4. Anastasiadis K. Mechanical support of circulatory system. Hellenic J Cardiol, 2003, 44: 341-347.
- 5. U.S National Library of Medicine. Thoratec HeartMate II Left Ventricular Assist System (LVAS) for destination therapy[P/OL]. (2005-07-21) [2020-08-31]. http://www.thoratec.com/patients-caregivers/about-heartmate II.aspx.
- 6. JarvikHeart. The Jarvik 2000®[ EB/OL]. [2020-08-31]. http://www.jarvikheart.com/basic.asp?id=23.
- 7. Methodisthealth. Methodist Health Care System: Methodist Health Care System Home Page. DeBakey VAD[EB/OL]. [2020-08-31]. http://www.methodisthealth.com.
- 8. Richenbacher W E, Pasini E, Farrar D J. Clinical update and transition to destination therapy for the MicroMed De Bakey VAD. Ann Thorac Surg, 2003, 75(2): S86.
- 9. Rose E A, Gelijns A C, Moskowitz A J, et al. Long-term use of a left ventricular assist device for end-stage heart failure. New Engl J Med, 2001, 345(20): 1435-1443.
- 10. Joyce D L, Crow S S, John R, et al. Mechanical circulatory support in patients with heart failure secondary to transposition of the great arteries. J Heart Lung Transplant, 2010, 29(11): 1302-1305.
- 11. Benton C R, Sayer G, Nair A P, et al. Left ventricular assist devices improve functional class without normalizing peak oxygen consumption. Asaio J, 2015, 61(3): 237-243.
- 12. Tarzia V, Buratto E, Bortolussi G, et al. Hemorrhage and thrombosis with different LVAD technologies: a matter of flow?. Ann Cardiothorac Surg, 2014, 3(6): 582-584.
- 13. Cheng A, Swartz M F, Massey H T. Impella to unload the left ventricle during peripheral extracorporeal membrane oxygenation. ASAIO J, 2013, 59(5): 533-536.
- 14. Riebandt J, Sandner S, Mahr S, et al. Minimally invasive thoratec heartmate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg, 2013, 96(3): 1094-1096.
- 15. Mackling T, Shah T, Dimas V, et al. Management of single-ventricle patients with Berlin Heart EXCOR Ventricular Assist Device: single-center experience. Artif Organs, 2012, 36(6): 555-559.
- 16. Karmonik C, Partovi S, Loebe M, et al. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J Thorac Cardiovasc Surg, 2014, 147(4): 1326-1333.
- 17. Karmonik C, Partovi S, Loebe M, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J, 2012, 58(6): 562-567.
- 18. Manoraj N, Urszula S, Michael I, et al. Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS One, 2014, 9(9): e92909.
- 19. Rommel J J, O’neill T J, Lishmanov A, et al. The role of heart failure pharmacotherapy after left ventricular assist device support. Heart Fail Clin, 2014, 10(4): 653-660.
- 20. Kurazumi H, Kubo M, Ohshima M, et al. The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One, 2011, 6(12): e28890.
- 21. 陈琛, 尹成科, 徐博翎, 等. 磁悬浮人工心脏电涡流位移传感线圈特性研究. 传感器与微系统, 2015, 34(11): 38-41.
- 22. 北京生物医学工程. 国内首款人工心脏获批上市. 北京生物医学工程, 2019, 38(5): 522.
- 23. 吴广辉, 蔺嫦燕, 陈琛, 等. 植入型心室辅助装置溶血及可植入性实验. 首都医科大学学报, 2011, 32(6): 806-810.
- 24. 许剑, 王伟, 张杰民, 等. 基于 CFD 的磁液悬浮式血泵优化设计. 液压与气动, 2013, 2: 61-63.
- 25. 吴广辉, 蔺嫦燕, 陈琛, 等. 磁悬浮离心式左心室辅助装置溶血实验研究. 北京工业大学学报, 2013, 39(10): 1596-1600.
- 26. 张锡文, 祝雪娇, 象天工, 等. 一种植入式中空微型轴流血泵: CN102019002A. 2010-12-03.
- 27. Huang F, Ruan X, Fu X. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation. ASAIO J, 2014, 60(3): 269-279.
- 28. Chang Y, Gao B. Modeling and identification of an intra-aorta pump. ASAIO J, 2010, 56(6): 504-509.
- 29. Zhu S D, Luo L, Yang B B, et al. Effects of an intra-ventricular assist device on the stroke volume of failing ventricle: Analysis of a mock circulatory system. Technol Health Care, 2018: S471-S479.
- 30. Chiu W C, Slepian M J, Bluestein D. Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations. Asaio J, 2014, 60(2): 237-240.
- 31. Thoennissen N H, Schneider M, Allroggen A, et al. High level of cerebral microembolization in patients supported with the DeBakey left ventricular assist device. J Thorac Cardiovasc Surg, 2005, 130(4): 1159-1166.
- 32. Wilhelm M J, Hammel D, Schmid C, et al. Long-term support of 9 patients with the DeBakey VAD for more than 200 days. J Thorac Cardiovasc Surg, 2005, 130(4): 1122-1129.
- 33. Schmid C, Jurmann M, Birnbaum D, et al. Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis. J Heart Lung Transplant, 2008, 27(3): 253-260.
- 34. Schmid C, Welp H, Klotz S, et al. Outcome of patients surviving to heart transplantation after being mechanically bridged for more than 100 days. J Heart Lung Transplant, 2003, 22(9): 1054-1058.
- 35. Wadowski P P, Steinlechner B, Zimpfer D, et al. Functional capillary impairment in patients with ventricular assist devices. Sci Rep, 2019, 9: 5909.
- 36. Chen Z, Mondal N K, Ding J, et al. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem, 2015: 93-101.
- 37. Hu Jingping, Mondal N K, Sorensen E N, et al. Platelet glycoprotein Ibα ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant, 2014, 33(1): 71-79.
- 38. Bounouib M, Benakrach H, Mohamed Es-Sadek Zeriab, et al. Numerical study of a new ventricular assist device. Artif Organs, 2020, 44(6): 604-610.
- 39. Yang X C, Zhang Y, Gui X M, et al. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump. Artif Organs, 2011, 35(10): 948-955.
- 40. Burgreen G W, Antaki J F, Wu J, et al. A computational and experimental comparison of two outlet stators for the Nimbus LVAD. Left ventricular assist device. ASAIO J, 1999, 45(4): 328-333.
- 41. Untaroiu A, Throckmorton A L, Patel S M, et al. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artif Organs, 2005, 29(7): 581-591.
- 42. Kang C, Huang Q, Li Y. Fluid dynamics aspects of miniaturized axial-flow blood pump. Biomed Mater Eng, 2014, 24(1): 723-729.
- 43. Zhu L, Zhang X, Yao Z. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics. Artif Organs, 2010, 34(3): 185-192.
- 44. Ghadimi B, Nejat A, Nourbakhsh S A, et al. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm. J Artif Organs, 2019, 22(1): 29-36.
- 45. Ghadimi B, Nejat A, Nourbakhsh S A, et al. Multi-objective genetic algorithm assisted by an artificial neural network metamodel for shape optimization of a centrifugal blood pump. Artif Organs, 2019, 43(5): E76-E93.
- 46. Leverett L B, Hellums J D, Alfrey C P, et al. Red blood cell damage by shear stress. Biophys J, 1972, 12(3): 257-273.
- 47. Taskin M E, Fraser K H, Zhang T, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J, 2012, 58(4): 363-372.
- 48. Blackshear P L Jr, Dorman F D, Steinbach J H. Some mechanical effects that influence hemolysis. Trans Am Soc Artif Intern Organs, 1965, 11(1): 112-117.
- 49. Giersiepen M, Wurzinger L J, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13(5): 300-306.
- 50. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology, 1980, 17(1-2): 17-24.
- 51. Zhang T, Taskin M E, Fang H B, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs, 2015, 35(12): 1180-1186.
- 52. Ding J, Niu S, Chen Z, et al. Shear-induced hemolysis: species differences. Artif Organs, 2015, 39(9): 795-802.
- 53. Garon A, Farinas M I. Fast three-dimensional numerical hemolysis approximation. Artif Organs, 2015, 28(11): 1016-1025.
- 54. Rezaienia M A, Paul G, Avital E, et al. Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J, 2018, 64(5): 643-650.
- 55. Grigioni M, Daniele C, Morbiducci U, et al. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs, 2004, 28(5): 467-475.
- 56. Song X, Throckmorton A L, Wood H G, et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs, 2003, 27(10): 938-941.
- 57. Ding J, Chen Z, Niu S, et al. Quantification of shear-induced platelet activation: high shear stresses for short exposure time. Artif Organs, 2015, 39(7): 576-583.
- 58. Wang L, Chen Z, Zhang J, et al. Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method. Bull Math Biol, 2020, 82(7): 83.
- 59. Consolo F, Sheriff J, Gorla S, et al. High frequency components of hemodynamic shear stress profiles are a major determinant of shear-mediated platelet activation in therapeutic blood recirculating devices. Sci Rep, 2017, 7(1): 4994.
- 60. Zhang Q, Gao B, Chang Y. Computational analysis of intra-ventricular flow pattern under partial and full support of BJUT-II VAD. Med Sci Monit, 2017, 23: 1043-1054.
- 61. 张敏宏, 郭伟, 刘小平, 等. 国人升主动脉及主动脉弓的CT解剖研究. 中华普通外科杂志, 2009, 24(1): 42-44.
- 62. 吴晋宝, 王永珍. 胸部主动脉各段的外径及长度. 解剖学杂志, 1987(4): 333-34.
- 63. Nadiv Y, Vachbroit R, Gefen A, et al. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise. J Appl Biomech, 2012, 28(2): 139-147.
- 64. Paul R, Apel J, Klaus S, et al. Shear stress related blood damage in laminar Couette flow. Artif Organs, 2015, 27(6): 517-529.
- 65. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol, 2008, 52(19): 1584-1588.
- 66. Bianco C M, Burch A E, Mawardi G, et al. The impact of hemolysis on outcomes of cardiogenic shock patients supported with impella percutaneous left ventricular assist device. J Card Fail, 2016: S110.
- 67. Vaidya V R, Desimone C V, Madhavan M, et al. Compatibility of electroanatomical mapping systems with a concurrent percutaneous axial flow ventricular assist device. J Cardiovasc Electrophysiol, 2014, 63(7): A308-A308.
- 68. Hayward C S. Red blood cells and left ventricular assist devices – A lifespan under stress. J Heart Lung Transplant, 2017, 36(6): 609-610.
- 69. ASTM F1841-97. Standard practice for assessment of hemolysis in continuous flow blood pumps. ASTM, 2017.
- 70. Spiliopoulos K, Giamouzis G, Karayannis G, et al. Current status of mechanical circulatory support: a systematic review. Cardiol Res Pract, 2012, 2012: 574198.
- 71. Kirklin J K, Naftel D C, Kormos R L, et al. The Fourth Intermacs Annual Report: 4,000 implants and counting. J Heart Lung Transplant, 2012, 31(2): 117-126.
- 72. 黑飞龙, 朱德明, 侯晓彤, 等. 2016 年中国心脏外科手术和体外循环数据白皮书. 中国体外循环杂志, 2017, 15(2): 65-67.
- 73. Horobin J T, Sabapathy S, Simmonds M J. Red blood cell tolerance to shear stress above and below the subhemolytic threshold. Biomech Model Mechanobiol, 2020, 19(3): 851-860.
- 74. Woelke E, Klein M, Mager I, et al. Miniaturized test loop for the assessment of blood damage by continuous-flow left-ventricular assist devices. Ann Biomed Eng, 2019, 48(2): 768-779.