1. |
Caló E, Khutoryanskiy V V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J, 2015, 65: 252-267.
|
2. |
Lin Yinlei, He Deliu, Hu Huawen, et al. Polydimethylsiloxane (PDMS)-containing hydrogels prepared by micellar copolymerization in aqueous media. Mater Lett, 2020, 263: 127251.
|
3. |
Burdick J A, Murphy W L. Moving from static to dynamic complexity in hydrogel design. Nat Commun, 2012, 3(1): 1-8.
|
4. |
Ahmed E M. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015, 6(2): 105-121.
|
5. |
Guo C, Bailey T S. Tailoring mechanical response through coronal layer overlap in tethered micelle hydrogel networks. Soft Matter, 2015, 11(37): 7345-7355.
|
6. |
Lv Juan, Wu Gang, Liu Ying, et al. Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Sci China Chem, 2019, 62(5): 637-648.
|
7. |
Anirudhan T S, Parvathy J, Nair A S. A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs. Carbohydr Polym, 2016, 136: 1118-1127.
|
8. |
Rafieian S, Mirzadeh H, Mahdavi H, et al. A review on nanocomposite hydrogels and their biomedical applications. Sci ang Compos Mater, 2019, 26(1): 154-174.
|
9. |
Gaharwar A K, Peppas N A, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng, 2014, 111(3): 441-453.
|
10. |
Schexnailder P, Schmidt G. Nanocomposite polymer hydrogels. Colloid Polym Sci, 2009, 287(1): 1-11.
|
11. |
Zhang Longshuai, Liu Yuancheng, Zhang Kui, et al. Redox-responsive comparison of diselenide micelles with disulfide micelles. Colloid Polym Sci, 2019, 297(2): 225-238.
|
12. |
Basílio N, García-Río L. Photoswitchable vesicles. Curr Opin Colloid In, 2017, 32: 29-38.
|
13. |
Liu Zhuang, Faraj Y, Ju Xiaojie, et al. Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: A mini review. J Polym Sci Part B: Polym Phys, 2018, 56(19): 1306-1313.
|
14. |
Manjappa A S, Kumbhar P S, Patil A B, et al. Polymeric mixed micelles: improving the anticancer efficacy of single-copolymer micelles. Crit Rev Ther Drug Carrier Syst, 2019, 36(1): 1-58.
|
15. |
Sun X, Wang G, Zhang H, et al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano, 2018, 12(6): 6179-6192.
|
16. |
Sun Q, Zhou Z, Qiu N, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater, 2017, 29(14): 1606628.
|
17. |
Qin Xianyan, Xu Yingying, Zhou Xu, et al. An injectable micelle-hydrogel hybrid for localized and prolonged drug delivery in the management of renal fibrosis. Acta Pharm Sin B, 2021, 11(3): 835-847.
|
18. |
Laurano R, Boffito M. Thermosensitive micellar hydrogels as vehicles to deliver drugs with different wettability. Front Bioeng Biotechnol, 2020, 8: 708.
|
19. |
Kang M L, Jeong S Y, Im G I. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated kartogenin for the treatment of osteoarthritis. Tissue Eng Part A, 2017, 23(13-14): 630-639.
|
20. |
Wen Y, Li F, Li C, et al. High mechanical strength chitosan-based hydrogels cross-linked with poly(ethylene glycol)/polycaprolactone micelles for the controlled release of drugs/growth factors. J Mater Chem B, 2017, 5(5): 961-971.
|
21. |
Xiao L, Zhu J, Londono D J, et al. Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft Matter, 2012, 8(40): 10233-10237.
|
22. |
Xu Xiaoding, Zhang Xianzheng, Yang Jie, et al. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir, 2007, 23(8): 4231-4236.
|
23. |
Wei S, Liu X, Zhou J, et al. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int J Biol Macromol, 2020, 155: 153-162.
|
24. |
Wen N, Lu S, Xu X, et al. A polysaccharide-based micelle-hydrogel synergistic therapy system for diabetes and vascular diabetes complications treatment. Mater Sci Eng C Mater Biol Appl, 2019, 100: 94-103.
|
25. |
Uchida Y, Fukuda K, Murakami Y. The hydrogel containing a novel vesicle-like soft crosslinker, a “trilayered” polymeric micelle, shows characteristic rheological properties. J Polym Sci Part B: Polym Phys, 2013, 51(2): 124-131.
|
26. |
Nascimento L G L, Casanova F, Silva N F N, et al. Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocoll, 2020, 106: 105872.
|
27. |
Huppertz T, De Kruif C G. Structure and stability of nanogel particles prepared by internal cross-linking of casein micelles. Int Dairy J, 2008, 18(5): 556-565.
|
28. |
Jeon I, Cui J, Illeperuma W R, et al. Extremely stretchable and fast self‐healing hydrogels. Adv Mater, 2016, 28(23): 4678-4683.
|
29. |
牛娜, 李志英, 高婷婷, 等. 疏水缔合水凝胶. 化学进展, 2017, 29(7): 757-765.
|
30. |
Bilici C, Okay O. Shape memory hydrogels via micellar copolymerization of acrylic acid and n-octadecyl acrylate in aqueous media. Macromolecules, 2013, 46(8): 3125-3131.
|
31. |
Xu X D, Liu J, Wu Y P, et al. Biocompatible tough hydrogels via micellar copolymerization of NIPAM and stearyl acrylate: synthesis and characterization. Key Eng Mater, 2017, 748: 96-102.
|
32. |
Cui Zhao, Cheng Ru, Liu Jie, et al. Hydrophobic association hydrogels based on N-acryloyl-alanine and stearyl acrylate using gelatin as emulsifier. RSC Adv, 2016, 6(45): 38957-38963.
|
33. |
Yu Xiaofeng, Qin Zezhao, Wu Haiyang, et al. pH-driven preparation of small, non-aggregated micelles for ultra-stretchable and tough hydrogels. Chem Eng J, 2018, 342: 357-363.
|
34. |
Wang Peng, Deng Guohua, Zhou Lanying, et al. Ultrastretchable, self-healable hydrogels based on dynamic covalent bonding and triblock copolymer micellization. ACS Macro Lett, 2017, 6(8): 881-886.
|
35. |
Lin Yinlei, He Deliu, Chen Zhifeng, et al. Double-crosslinked network design for self-healing, highly stretchable and resilient polymer hydrogels. RSC Adv, 2016, 6(15): 12479-12485.
|
36. |
Zhou Hongwei, Jin Xilang, Yan Bo, et al. Mechanically robust, tough, and self-recoverable hydrogels with molecularly engineered fully flexible crosslinking structure. Macromol Mater Eng, 2017, 302(9): 1700085.
|
37. |
Sun Yuanna, Gao Guorong, Du Gaolai, et al. Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers. ACS Macro Lett, 2014, 3(5): 496-500.
|
38. |
Akca O, Yetiskin B, Okay O. Hydrophobically modified nanocomposite hydrogels with self-healing ability. J Appl Polym Sci, 2020, 137(28): 48853.
|
39. |
Qin Z, Yu X, Wu H, et al. Nonswellable and tough supramolecular hydrogel based on strong micelle cross-linkings. Biomacromolecules, 2019, 20(9): 3399-3407.
|
40. |
Xu Zuxiang, Li Jinhui, Gao Guorong, et al. Tough and self-recoverable hydrogels crosslinked by triblock copolymer micelles and Fe3+ coordination. J Polym Sci B Polym Phys, 2018, 56(11): 865-876.
|
41. |
Sheu M T, Jhan H J, Su C Y, et al. Codelivery of doxorubicin-containing thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy. Colloids Surf B, 2016, 143: 260-270.
|
42. |
Cong Z, Shi Y, Wang Y, et al. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol, 2018, 107: 855-864.
|
43. |
Li J, Mooney D J. Designing hydrogels for controlled drug delivery. Nat Rev Mater, 2016, 1(12): 1-17.
|
44. |
Wang Y, Chen L, Tan L, et al. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials, 2014, 35(25): 6972-6985.
|
45. |
Jang J H, Jeong S H, Lee Y B. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. Int J Mol Sci, 2019, 20(13): 33312.
|
46. |
Qindeel M, Khan D, Ahmed N, et al. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS nano, 2020, 14(4): 4662-4681.
|
47. |
Fu C, Lin X, Wang J, et al. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. J Mater Sci Mater Med, 2016, 27(4): 73.
|
48. |
Zhang Z, He Z, Liang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules, 2016, 17(3): 798-807.
|
49. |
Placente D, Benedini L A, Baldini M, et al. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int J Pharm, 2018, 548(1): 559-570.
|
50. |
Angelova A, Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen Res, 2017, 12(6): 886-889.
|
51. |
Ma Dong, Zhang Hongbin, Tu Kai, et al. Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor. Soft Matter, 2012, 8(13): 3665-3672.
|
52. |
Gao Nannan, Lü Shaoyu, Gao Chunmei, et al. Injectable shell-crosslinked F127 micelle/hydrogel composites with pH and redox sensitivity for combined release of anticancer drugs. Chem Eng J, 2016, 287: 20-29.
|
53. |
Patel M, Kaneko T, Matsumura K. Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle-hydrogel composite. J Mater Chem B, 2017, 5(19): 3488-3497.
|
54. |
Gong C, Wang C, Wang Y, et al. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale, 2012, 4(10): 3095-3104.
|
55. |
Wei L, Cai C, Lin J, et al. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials, 2009, 30(13): 2606-2613.
|
56. |
Guan Zhiyu, Yang Lijun, Wang Weiwei, et al. Thermosensitive micellar hydrogel for enhanced anticancer therapy through redox modulation mediated combinational effects. RSC Adv, 2017, 7(55): 34755-34762.
|
57. |
Liu Zhijia, Xu Guangrui, Wang Chaonan, et al. Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int J Pharm, 2017, 530(1-2): 53-62.
|
58. |
Ambekar R S, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J, 2019, 117: 304-336.
|
59. |
Francesko A, Petkova P, Tzanov T. Hydrogel dressings for advanced wound management. Curr Med Chem, 2018, 25(41): 5782-5797.
|
60. |
Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics. Adv Wound Care, 2016, 5(1): 32-41.
|
61. |
Koehler J, Brandl F P, Goepferich A M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J, 2018, 100: 1-11.
|
62. |
Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces, 2018, 10(30): 25194-25202.
|
63. |
Ganguly R, Kumar S, Kunwar A, et al. Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. J Mol Liq, 2020, 314: 113591.
|
64. |
Hu Cheng, Zhang Fanjun, Long Linyu, et al. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J Control Release, 2020, 324: 204-217.
|
65. |
Patel M, Nakaji-Hirabayashi T, Matsumura K. Effect of dual-drug-releasing micelle-hydrogel composite on wound healing in vivo in full-thickness excision wound rat model. J Biomed Mater Res A, 2019, 107(5): 1094-1106.
|
66. |
Zhao H, Liu M, Zhang Y, et al. Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 2020, 12(28): 14976-14995.
|
67. |
Cho I S, Ooya T. Cell-encapsulating hydrogel puzzle: Polyrotaxane-based self-healing hydrogels. Chem Eur J, 2020, 26(4): 913-920.
|
68. |
Yan Shifeng, Ren Jie, Jian Yuhang, et al. Injectable maltodextrin-based micelle/hydrogel composites for simvastatin-controlled release. Biomacromolecules, 2018, 19(12): 4554-4564.
|