• 1. School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, P.R.China;
  • 2. West China Hospital, Sichuan University, Chengdu 610041, P.R.China;
  • 3. 29th Research Institute of CETC, Chengdu 610093, P.R.China;
ZHANG Heng, Email: Ohwhat@163.com; LAI Dakun, Email: dklai@uestc.edu.cn
Export PDF Favorites Scan Get Citation

It is very important for epilepsy treatment to distinguish epileptic seizure and non-seizure. In this study, an automatic seizure detection algorithm based on dual density dual tree complex wavelet transform (DD-DT CWT) for intracranial electroencephalogram (iEEG) was proposed. The experimental data were collected from 15 719 competition data set up by the National Institutes of Health (NINDS) in Kaggle. The processed database consisted of 55 023 seizure epochs and 501 990 non-seizure epochs. Each epoch was 1 second long and contained 174 sampling points. Firstly, the signal was resampled. Then, DD-DT CWT was used for EEG signal processing. Four kinds of features include wavelet entropy, variance, energy and mean value were extracted from the signal. Finally, these features were sent to least squares-support vector machine (LS-SVM) for learning and classification. The appropriate decomposition level was selected by comparing the experimental results under different wavelet decomposition levels. The experimental results showed that the features selected in this paper were different between seizure and non-seizure. Among the eight patients, the average accuracy of three-level decomposition classification was 91.98%, the sensitivity was 90.15%, and the specificity was 93.81%. The work of this paper shows that our algorithm has excellent performance in the two classification of EEG signals of epileptic patients, and can detect the seizure period automatically and efficiently.

Citation: KANG Tongzhou, ZUO Rundong, ZHONG Lanfeng, CHEN Wenjing, ZHANG Heng, LIU Hongxiu, LAI Dakun. Automatic epileptic seizure detection algorithm based on dual density dual tree complex wavelet transform. Journal of Biomedical Engineering, 2021, 38(6): 1035-1042. doi: 10.7507/1001-5515.202105075 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Next Article

    Intelligence-aided diagnosis of Parkinson’s disease with rapid eye movement sleep behavior disorder based on few-channel electroencephalogram and time-frequency deep network