1. |
Cole J B, Florez J C. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol, 2020, 16(7): 377-390.
|
2. |
Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018, 14(2): 88-98.
|
3. |
Saran R, Robinson B, Abbott K C, et al. US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis, 2020, 75(1): A6-A7.
|
4. |
王富军, 王文琦. 《中国2型糖尿病防治指南(2020年版)》解读. 河北医科大学学报, 2021, 42(12): 1365-1371.
|
5. |
Kovatchev B. Diabetes technology: monitoring, analytics, and optimal control. Cold Spring Harb Perspect Med, 2019, 9(6): a034389.
|
6. |
Vettoretti M, Facchinetti A. Combining continuous glucose monitoring and insulin pumps to automatically tune the basal insulin infusion in diabetes therapy: a review. Biomed Eng Online, 2019, 18(1): 37.
|
7. |
Kovatchev B. A century of diabetes technology: signals, models, and artificial pancreas control. Trends Endocrinol Metab, 2019, 30(7): 432-444.
|
8. |
Kropff J, Choudhary P, Neupane S, et al. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial. Diabetes Care, 2017, 40(1): 63-68.
|
9. |
Christiansen M P, Klaff L J, Brazg R, et al. A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISEⅡ. Diabetes Technol Ther, 2018, 20(3): 197-206.
|
10. |
Marks B E, Williams K M, Sherwood J S, et al. Practical aspects of diabetes technology use: continuous glucose monitors, insulin pumps, and automated insulin delivery systems. J Clin Transl Endocrinol, 2021, 27: 100282.
|
11. |
Wang M, Singh L G, Spanakis E K. Advancing the use of CGM devices in a non-ICU setting. J Diabetes Sci Technol, 2019, 13(4): 674-681.
|
12. |
Huang J H, Lin Y K, Lee T W, et al. Correlation between short- and mid-term hemoglobin A1c and glycemic control determined by continuous glucose monitoring. Diabetol Metab Syndr, 2021, 13(1): 94.
|
13. |
Tang L, Chang S J, Chen C J, et al. Non-invasive blood glucose monitoring technology: a review. Sensors (Basel), 2020, 20(23): 6925.
|
14. |
Slugocki M, Bialonczyk D, Özdener A E. A review of emerging technologies in diabetes management for multiple-dose insulin-injecting patients with type 2 diabetes who self-monitor blood glucose. J Pharm Technol, 2019, 35(2): 69-81.
|
15. |
Mian Z, Hermayer K L, Jenkins A. Continuous glucose monitoring: review of an innovation in diabetes management. Am J Med Sci, 2019, 358: 332-339.
|
16. |
Svertoka E, Saafi S, Rusu-Casandra A, et al. Wearables for industrial work safety: a survey. Sensors (Basel), 2021, 21(11): 3844.
|
17. |
Meetoo D, Wong L, Ochieng B. Smart tattoo: technology for monitoring blood glucose in the future. Br J Nurs, 2019, 28(2): 110-115.
|
18. |
Heo Y J, Takeuchi S. Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv Healthc Mater, 2013, 2(1): 43-56.
|
19. |
Dai J, Zhang H, Huang C, et al. A gel-based separation-free point-of-care device for whole blood glucose detection. Anal Chem, 2020, 92(24): 16122-16129.
|
20. |
Zhang H, Yang Y, Dai J, et al. Fabrication methods for a gel-based separation-free device for whole blood glucose detection. MethodsX, 2021, 8: 101236.
|
21. |
Malik B H, Coté G L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring. J Biomed Opt. 2010, 15(1): 017002.
|
22. |
Stark C, Behroozian R, Redmer B, et al. Real-time compensation method for robust polarimetric determination of glucose in turbid media. Biomed Opt Express, 2018, 10(1): 308-321.
|
23. |
Stark C, Carvajal Arrieta C A, Behroozian R, et al. Broadband polarimetric glucose determination in protein containing media using characteristic optical rotatory dispersion. Biomed Opt Express, 2019, 10(12): 6340-6350.
|
24. |
许婷, 彭玉峰, 韩雪云. 基于法拉第旋光效应的葡萄糖浓度传感研究. 光电子•激光, 2021, 32(02): 173-180.
|
25. |
Chen T L, Lo Y L, Liao C C, et al. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography. J Biomed Opt, 2018, 23(4): 1-9.
|
26. |
Alsunaidi B, Althobaiti M, Tamal M, et al. A review of non-invasive optical systems for continuous blood glucose monitoring. Sensors (Basel), 2021, 21(20): 6820.
|
27. |
Weatherbee A, Popov I, Vitkin A. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography. J Biomed Opt, 2017, 22(8): 1-10.
|
28. |
Shokrekhodaei M, Cistola D P, Roberts R C, et al. Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access, 2021, 9: 73029-73045.
|
29. |
Heise H M, Delbeck S, Marbach R. Noninvasive monitoring of glucose using near-infrared reflection spectroscopy of skin-constraints and effective novel strategy in multivariate calibration. Biosensors (Basel), 2021, 11(3): 64.
|
30. |
Wu M, Liu R, Xu K. Near-infrared diffuse reflectance measurement method based on temperature-insensitive radial distance. Appl Spectrosc, 2018, 72(7): 1021-1028.
|
31. |
黄珊,朱书缘,赵蒙蒙, 等. 组织模型中葡萄糖的近红外光谱特性. 激光与光电子学进展, 2020, 57(15): 287-293.
|
32. |
栗红, 宋范蕾, 宋莉. 基于近红外光谱法无创检测血糖浓度校正模型的建立. 中国科技信息, 2021(16): 105-106.
|
33. |
Pullano S A, Greco M, Bianco M G, et al. Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics, 2022, 12(2): 493-511.
|
34. |
Shih W C, Bechtel K L, Rebec M V. Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt, 2015, 20(5): 051036.
|
35. |
Yang D, Afroosheh S, Lee J O, et al. Glucose sensing using surface-enhanced Raman-mode constraining. Anal Chem, 2018, 90(24): 14269-14278.
|
36. |
Kang J W, Park Y S, Chang H, et al. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci Adv, 2020, 6(4): eaay5206.
|
37. |
Oyaert M, Delanghe J R. Semiquantitative, fully automated urine test strip analysis. J Clin Lab Anal. 2019, 33(5): e22870.
|
38. |
Luo Y, Shen R, Li T, et al. The peroxidase-mimicking function of acetate and its application in single-enzyme-based glucose test paper. Talanta, 2019, 196: 493-497.
|
39. |
Mohammadifar M, Tahernia M, Choi S. An equipment-free, paper-based electrochemical sensor for visual monitoring of glucose levels in urine. SLAS Technol, 2019, 24(5): 499-505.
|
40. |
Chen J, Guo H, Yuan S, et al. Efficacy of urinary glucose for diabetes screening: a reconsideration. Acta Diabetol, 2019, 56(1): 45-53.
|
41. |
Aldridge C F, Behrend E N, Smith J R, et al. Accuracy of urine dipstick tests and urine glucose-to-creatinine ratios for assessment of glucosuria in dogs and cats. J Am Vet Med Assoc, 2020, 257(4): 391-396.
|
42. |
Badugu R, Reece E A, Lakowicz J R. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring. J Biomed Opt. 2018, 23(5): 1-9.
|
43. |
Aihara M, Kubota N, Minami T, et al. Association between tear and blood glucose concentrations: random intercept model adjusted with confounders in tear samples negative for occult blood. J Diabetes Investig. 2021, 12(2): 266-276.
|
44. |
Lee S H, Cho Y C, Bin C Y. Noninvasive self-diagnostic device for tear collection and glucose measurement. Sci Rep, 2019, 9(1): 4747.
|
45. |
Sempionatto J R, Brazaca L C, García-Carmona L, et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron, 2019, 137: 161-170.
|
46. |
Han J H, Cho Y C, Koh W G, et al. Preocular sensor system for concurrent monitoring of glucose levels and dry eye syndrome using tear fluids. PLoS One, 2020, 15(10): e0239317.
|
47. |
Lin Y R, Hung C C, Chiu H Y, et al. Noninvasive glucose monitoring with a contact lens and smartphone. Sensors (Basel), 2018, 18(10): 3208.
|
48. |
Li X, Huang X, Mo J, et al. A Fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv Sci (Weinh), 2021, 8(16): e2100827.
|
49. |
Cheng S, Gu Z, Zhou L, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids. Front Bioeng Biotechnol, 2021, 9: 765987.
|
50. |
Zhang S, Zeng J, Wang C, et al. The application of wearable glucose sensors in point-of-care testing. Front Bioeng Biotechnol, 2021, 9: 774210.
|
51. |
Teymourian H, Moonla C, Tehrani F, et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal Chem, 2020, 92(2): 2291-2300.
|
52. |
Lipani L, Dupont B G R, Doungmene F, et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol, 2018, 13(6): 504-511.
|
53. |
Hakala T A, García Pérez A, Wardale M, et al. Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring. Sci Rep, 2021, 11(1): 7609.
|
54. |
Ye S, Feng S, Huang L, et al. Recent progress in wearable biosensors: from healthcare monitoring to sports analytics. Biosensors (Basel), 2020, 10(12): 205.
|
55. |
Moyer J, Wilson D, Finkelshtein I, et al. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther, 2012, 14(5): 398-402.
|
56. |
Bandodkar A J, Jeang W J, Ghaffari R, et al. Wearable sensors for biochemical sweat analysis. Annu Rev Anal Chem (Palo Alto Calif), 2019, 12(1): 1-22.
|
57. |
Shu Y, Su T, Lu Q, et al. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal Chem, 2021, 93(48): 16222-16230.
|
58. |
Zhao Y, Zhai Q, Dong D, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal Chem, 2019, 91(10): 6569-6576.
|
59. |
Vaquer A, Barón E, Rica R. Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst. 2021, 146(10): 3273-3279.
|
60. |
Boscari F, Vettoretti M, Cavallin F, et al. Implantable and transcutaneous continuous glucose monitoring system: a randomized cross over trial comparing accuracy efficacy and acceptance. J Endocrinol Invest, 2022, 45(1): 115-124.
|