• School of Bioscience & Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China;
FANG Ying, Email: yfang@scut.edu.cn
Export PDF Favorites Scan Get Citation

In resting platelets, the 17th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563rd phenylalanine (PHE563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.

Citation: TAO Rencai, XIE Xubin, WU Jianhua, FANG Ying. Molecular dynamics simulation of force-regulated interaction between glycoprotein Ibα and filamin. Journal of Biomedical Engineering, 2023, 40(5): 876-885. doi: 10.7507/1001-5515.202302043 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Multi-classification prediction model of lung cancer tumor mutation burden based on residual network
  • Next Article

    Study on the difference of high frequency dielectric properties of biological tissues measured by air and packed coaxial probe