• 1. Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, Liaoning 116622, P. R. China;
  • 2. Internal Medicine-Neurology, Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center, Beijing 100176, P. R. China;
  • 3. Graduate School, Dalian University, Dalian, Liaoning 116622, P. R. China;
  • 4. Internal Medicine-Neurology, Zhongshan Hospital Affiliated to Dalian University, Dalian, Liaoning 116001, P. R. China;
  • 5. Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300192, P. R. China;
TAO Shuai, Email: taoshuai@dlu.edu.cn
Export PDF Favorites Scan Get Citation

Alzheimer’s disease (AD) is a common and serious form of elderly dementia, but early detection and treatment of mild cognitive impairment can help slow down the progression of dementia. Recent studies have shown that there is a relationship between overall cognitive function and motor function and gait abnormalities. We recruited 302 cases from the Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center and included 193 of them according to the screening criteria, including 137 patients with MCI and 56 healthy controls (HC). The gait parameters of the participants were collected during performing single-task (free walking) and dual-task (counting backwards from 100) using a wearable device. By taking gait parameters such as gait cycle, kinematics parameters, time-space parameters as the focus of the study, using recursive feature elimination (RFE) to select important features, and taking the subject’s MoCA score as the response variable, a machine learning model based on quantitative evaluation of cognitive level of gait features was established. The results showed that temporal and spatial parameters of toe-off and heel strike had important clinical significance as markers to evaluate cognitive level, indicating important clinical application value in preventing or delaying the occurrence of AD in the future.

Citation: TAO Shuai, HU Hongbin, KONG Liwen, LYU Zeping, WANG Zumin, ZHAO Jie, LIU Shuang. A study of cognitive impairment quantitative assessment method based on gait characteristics. Journal of Biomedical Engineering, 2024, 41(2): 281-287. doi: 10.7507/1001-5515.202305019 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Microwave Heartprint: A novel non-contact human identification technology based on cardiac micro-motion detection using ultra wideband bio-radar
  • Next Article

    Snoring noise removal method for bowel sound signal during sleep