• 1. School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China;
  • 2. Department of Medical Engineering, Daping Hospital of Army Medical University, Chongqing 400042, P. R. China;
  • 3. School of Biological Information, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China;
ZHANG Hehua, Email: zhanghehua@vip.163.com
Export PDF Favorites Scan Get Citation

The conventional fault diagnosis of patient monitors heavily relies on manual experience, resulting in low diagnostic efficiency and ineffective utilization of fault maintenance text data. To address these issues, this paper proposes an intelligent fault diagnosis method for patient monitors based on multi-feature text representation, improved bidirectional gate recurrent unit (BiGRU) and attention mechanism. Firstly, the fault text data was preprocessed, and the word vectors containing multiple linguistic features was generated by linguistically-motivated bidirectional encoder representation from Transformer. Then, the bidirectional fault features were extracted and weighted by the improved BiGRU and attention mechanism respectively. Finally, the weighted loss function is used to reduce the impact of class imbalance on the model. To validate the effectiveness of the proposed method, this paper uses the patient monitor fault dataset for verification, and the macro F1 value has achieved 91.11%. The results show that the model built in this study can realize the automatic classification of fault text, and may provide assistant decision support for the intelligent fault diagnosis of the patient monitor in the future.

Citation: HE Xiangfei, ZHANG Hehua, HUANG Jing, ZHAO Dechun, LI Yang, NIE Rui, LIU Xianghua. Research on fault diagnosis of patient monitor based on text mining. Journal of Biomedical Engineering, 2024, 41(1): 168-176. doi: 10.7507/1001-5515.202306017 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Modeling and comfort analysis of arrayed air cushion mattress for pressure ulcer prevention and assisted repositioning
  • Next Article

    Research on Parkinson’s disease recognition algorithm based on sample enhancement