1. |
Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: A survey. IEEE Trans Med Imaging, 2013, 32(7): 1153-1190.
|
2. |
Ferrante E, Paragios N. Slice-to-volume medical image registration: A survey. Med Image Anal, 2017, 39: 101-123.
|
3. |
Fu Y, Lei Y, Wang T, et al. Deep learning in medical image registration: a review. Phys Med Biol, 2020, 65(20): 20TR01.
|
4. |
Jaderberg M, Simonyan K, Zisserman A, et al. Spatial Transformer Networks// Cortes C, Lee D D, Sugiyama M, et al. NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015, 2: 2017-2025.
|
5. |
Ungi T, Lasso A, Fichtinger G. Open-source platforms for navigated image-guided interventions. Med Image Anal, 2016, 33: 181-186.
|
6. |
Yang Q, Atkinson D, Fu Y, et al. Cross-modality image registration using a training-time privileged third modality. IEEE Trans Med Imaging, 2022, 41(11): 3421-3431.
|
7. |
Song X, Chao H, Xu X, et al. Cross-modal attention for multi-modal image registration. Med Image Anal, 2022, 82: 102612.
|
8. |
Rao Y, Zhou Y, Wang Y. Salient deformable network for abdominal multiorgan registration. Med Phys, 2022, 49(9): 5953-5963.
|
9. |
Avants B B, Epstein C L, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 2008, 12(1): 26-41.
|
10. |
Balakrishnan G, Zhao A, Sabuncu M R, et al. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging, 2019, 38(8): 1788-1800.
|
11. |
Arsigny V, Commowick O, Pennec X, et al. A log-euclidean framework for statistics on diffeomorphisms// Larsen R, Nielsen M, Sporring J M. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, 4190: 924-931.
|
12. |
Chen J, Frey E C, He Y, et al. Transmorph: transformer for unsupervised medical image registration. Med Image Anal, 2022, 82: 102615.
|
13. |
Dey N, Schlemper J, Salehi S S M, et al. ContraReg: contrastive learning of multi-modality unsupervised deformable image registration// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 66-77.
|
14. |
Kim B, Kim D H, Park S H, et al. CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal, 2021, 71: 102036.
|
15. |
Kang M, Hu X, Huang W, et al. Dual-stream pyramid registration network. Med Image Anal, 2022, 78: 102379.
|
16. |
Liu Y, Zuo L, Han S, et al. Coordinate translator for learning deformable medical image registration// International Workshop on Multiscale Multimodal Medical Imaging. Cham: Springer Nature Switzerland, 2022: 98-109.
|
17. |
Chen J, He Y, Frey E C, et al. Vit-V-Net: vision transformer for unsupervised volumetric medical image registration. arXiv preprint arXiv, 2021: 2104.06468.
|
18. |
Zhu Y, Lu S. Swin-VoxelMorph: a symmetric unsupervised learning model for deformable medical image registration using swin transformer// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 78-87.
|
19. |
Gu A. Modeling sequences with structured state spaces. Palo Alto: Stanford University, 2023.
|
20. |
Gu A, Dao T. Mamba: linear-time sequence modeling with selective state spaces. arXiv preprint arXiv, 2023: 2312.00752.
|
21. |
Gu A, Goel K, Ré C. Efficiently modeling long sequences with structured state spaces. arXiv preprint arXiv, 2021: 2111.00396,.
|
22. |
Liu Y, Tian Y, Zhao Y, et al. VMamba: visual state space model. arXiv preprint arXiv, 2024: 2401.10166.
|
23. |
Ma J, Li F, Wang B. U-Mamba: enhancing long-range dependency for biomedical image segmentation. arXiv preprint arXiv, 2024: 2401.04722.
|
24. |
Xing Z, Ye T, Yang Y, et al. SegMamba: long-range sequential modeling mamba for 3D medical image segmentation. arXiv preprint arXiv, 2024: 2401.13560.
|
25. |
Wang Z, Zheng J Q, Zhang Y, et al. Mamba-UNet: UNet-like pure Visual Mamba for medical image segmentation. arXiv preprint arXiv, 2024: 2402.05079.
|
26. |
Wang Z, Ma C. Semi-Mamba-UNet: Pixel-level contrastive cross-supervised Visual Mamba-based UNet for semi-supervised medical image segmentation. arXiv preprint arXiv, 2024: 2402.07245.
|
27. |
Zhu L, Liao B, Zhang Q, et al. Vision Mamba: efficient visual representation learning with bidirectional state space model. arXiv preprint arXiv, 2024: 2401.09417.
|
28. |
Wang Z, Ma C. Weak-Mamba-UNet: Visual Mamba makes CNN and Vit work better for scribble-based medical image segmentation. arXiv preprint arXiv, 2024: 2402.10887.
|
29. |
Guo T, Wang Y, Meng C. MambaMorph: a Mamba-based backbone with contrastive feature learning for deformable MR-CT registration. arXiv preprint arXiv, 2024: 2401.13934.
|
30. |
Wang Z, Zheng J Q, Ma C, et al. VMambaMorph: a Visual Mamba-based framework with cross-scan module for deformable 3D image registration. arXiv preprint arXiv, 2024: 2404.05105.
|
31. |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks// Fleet D, Pajdla T, Schiele B, et al. Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science. Cham: Springer, 2014, 8689: 818-833.
|
32. |
Rao Y R, Prathapani N, Nagabhooshanam E. Application of normalized cross correlation to image registration. Intl J Res Eng Technol, 2014, 3(5): 12-16.
|
33. |
Marcus D S, Wang T H, Parker J, et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci, 2007, 19(9): 1498-1507.
|