1. |
Ng P T T, Straker L, Tucker K, et al. Advancing use of DEXA scans to quantitatively and qualitatively evaluate lateral spinal curves, for preliminary identification of adolescent idiopathic scoliosis. Calcified Tissue International, 2023, 112(6): 656-665.
|
2. |
Zhang Q, Chon T, Zhang Y, et al. Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Computers in Biology and Medicine, 2021, 136: 104745.
|
3. |
Perdriolle R, Becchetti S, Vidal J, et al. Mechanical process and growth cartilages. Essential factors in the progression of scoliosis. Spine, 1993, 18(3): 343-349.
|
4. |
Zhang J, Yan R, Xu S, et al. Short-term lumbar disc and lumbar stability changes of one-hole split endoscope technique treatment of spinal stenosis. BMC Musculoskeletal Disorders, 2024, 25(1): 325.
|
5. |
Jentzsch T, Mantel K E, Slankamenac K, et al. CT-based surrogate parameters for MRI-based disc height and endplate degeneration in the lumbar spine. BMC Medical Imaging, 2024, 24(1): 213.
|
6. |
Takemoto G, Osawa Y, Seki T, et al. Factors influencing inconsistent leg length discrepancy in dysplastic hip osteoarthritis: a retrospective study. BMC Musculoskeletal Disorders, 2022, 23(1): 381.
|
7. |
许世森, 鲁宁, 许平, 等. 弧形髋臼截骨术对腰椎生物力学影响. 医用生物力学, 2024, 39(5): 916-922.
|
8. |
Duan P, Ding X, Xiong M, et al. Biomechanical evaluation of a healed acetabulum with internal fixators: finite element analysis. Journal of Orthopaedic Surgery and Research, 2023, 18(1): 251.
|
9. |
鲍圣亮, 许平, 鲁宁, 等. 步态周期中髋关节软骨应力分布对弧形髋臼周围截骨手术的影响. 医用生物力学, 2022, 37(4): 612-617,623.
|
10. |
Shi D, Wang F, Wang D, et al. 3-D finite element analysis of the influence of synovial condition in sacroiliac joint on the load transmission in human pelvic system. Medical Engineering & Physics, 2014, 36(6): 745-753.
|
11. |
Bae J Y, Kwak D S, Park K S, et al. Finite element analysis of the multiple drilling technique for early osteonecrosis of the femoral head. Annals of Biomedical Engineering, 2013, 41(12): 2528-2537.
|
12. |
Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 2001, 34(7): 859-871.
|
13. |
Xiong B, Yang P, Lin T, et al. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of “gait-musculoskeletal system-finite element”. Journal of Orthopaedic Surgery and Research, 2022, 17(1): 267.
|
14. |
Shim C S, Park S W, Lee S H, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker. Spine, 2008, 33(22): E820-E827.
|
15. |
何沛檐, 裴葆青, 王唯, 等. 生长棒不同固定术式治疗早发性脊柱侧凸的生物力学分析. 医用生物力学, 2021, 36(6): 849-854.
|
16. |
Belytschko T, Kulak R F, Schultz A B, et al. Finite element stress analysis of an intervertebral disc. Journal of Biomechanics, 1974, 7(3): 277-285.
|
17. |
Wall C, McMeekin P, Walker R, et al. Sonification for personalised gait intervention. Sensors, 2023, 24(1): 65.
|
18. |
Li J, An Z, Wu J, et al. Construction of the adjusted scoliosis 3D finite element model and biomechanical analysis under gravity. Orthopaedic Surgery, 2023, 15(2): 606-616.
|
19. |
Stokes I A F. Mechanical modulation of spinal growth and progression of adolescent scoliosis. Studies in Health Technology and Informatics, 2008, 135: 75.
|
20. |
da Silveira G E, Andrade R M, Guilhermino G G, et al. The effects of short-and long-term spinal brace use with and without exercise on spine, balance, and gait in adolescents with idiopathic scoliosis. Medicina, 2022, 58(8): 1024.
|
21. |
Chockalingam N, Bandi S, Rahmatalla A, et al. Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking. Scoliosis, 2008, 3: 10.
|
22. |
Wilczyński J. Relationship between muscle tone of the erector spinae and the concave and convex sides of spinal curvature in low-grade scoliosis among children. Children, 2021, 8(12): 1168.
|
23. |
Güth V, Abbink F, Götze H G, et al. Investigation of gait of patients with idiopathic scoliosis and the influence of the Milwaukee brace on gait (author's transl). Zeitschrift fur Orthopadie und ihre Grenzgebiete, 1978, 116(5): 631-640.
|
24. |
Lim H J, Yoon H, Kim J, et al. Comparison of elasticity changes in the paraspinal muscles of adolescent patients with scoliosis treated with surgery and bracing. Scientific Reports, 2024, 14(1): 5623.
|
25. |
Bruyneel A V, Chavet P, Bollini G, et al. Gait initiation reflects the adaptive biomechanical strategies of adolescents with idiopathic scoliosis. Annals of Physical and Rehabilitation Medicine, 2010, 53(6-7): 372-386.
|
26. |
Herzog W, Nigg B M, Read L J, et al. Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc, 1989, 21(1): 110-114.
|
27. |
Kramers-de Quervain I A, Müller R, Stacoff A, et al. Gait analysis in patients with idiopathic scoliosis. European Spine Journal, 2004, 13(5): 449-456.
|