1. |
Tseng H W, Chou F H, Chen C H, et al. Effects of mindfulness-based cognitive therapy on major depressive disorder with multiple episodes: a systematic review and meta-analysis. Int J Environ Res Public Health, 2023, 20(2): 1555.
|
2. |
Francis S E B, Shawyer F, Cayoun B A, et al. Differentiating mindfulness-integrated cognitive behavior therapy and mindfulness-based cognitive therapy clinically: the why, how, and what of evidence-based practice. Front Psychol, 2024, 15: 1342592.
|
3. |
Tsang E W, Gao J, Lo C N, et al. Effects of mindfulness meditation on human impulsivity: a systematic review and meta-analysis. Acad Ment Health Well-Being, 2025, 2(1): 1-24.
|
4. |
Garland E L, Hanley A W, Nakamura Y, et al. Mindfulness-oriented recovery enhancement vs supportive group therapy for co-occurring opioid misuse and chronic pain in primary care: a randomized clinical trial. JAMA Intern Med, 2022, 182(4): 407-417.
|
5. |
Brown K W, Ryan R M. Mindful attention awareness scale. J Pers Soc Psychol, 2003.
|
6. |
Liang Xi Xi, Wang Jiu Ju, Wu Dan, et al. Comparative analysis of brainwave music translated from spontaneous EEG between major depression disorders and healthy people. Brain-Apparatus Commun, 2022, 1(1): 107-125.
|
7. |
Qi G, Liu R, Guan W, et al. Augmented recognition of distracted driving state based on electrophysiological analysis of brain network. Cyborg Bionic Syst, 2024, 5: 0130.
|
8. |
Shi Y, Ji M, Zhong F, et al. Resting-state EEG microstate analysis reveals potential biomarkers for subclinical insomnia. Brain-Apparatus Commun, 2024, 3(1): 2388106.
|
9. |
Lomas T, Ivtzan I, Fu C H Y. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci Biobehav Rev, 2015, 57: 401-410.
|
10. |
Ye W, Wang J, Chen L, et al. Adaptive spatial–temporal aware graph learning for EEG-based emotion recognition. Cyborg Bionic Syst, 2024, 5: 0088.
|
11. |
Li J, Li J, Wang X, et al. A domain generalization and residual network-based emotion recognition from physiological signals. Cyborg Bionic Syst, 2024, 5: 0074.
|
12. |
Li J, Yu Z, Du Z, et al. A comprehensive survey on source-free domain adaptation. IEEE Trans Pattern Anal Mach Intell, 2024, 46(8): 5743-5762.
|
13. |
Yang J, Yan R, Hauptmann A G. Cross-domain video concept detection using adaptive SVMs// Proceedings of the 15th ACM International Conference on Multimedia. Augsburg: ACM, 2007: 188-197.
|
14. |
Zhu Y, Zhuang F, Wang D. Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 5989-5996.
|
15. |
Wang L, Zhang X, Su H, et al. A comprehensive survey of continual learning: Theory, method and application. IEEE Trans Pattern Anal Mach Intell, 2024, 46(8): 5362-5383.
|
16. |
Wang Y, Huang Z, Hong X. S-Prompts learning with pre-trained transformers: An Occam’s Razor for domain incremental learning// Advances in Neural Information Processing Systems 35 (NeurIPS 2022). New Orleans: NeurIPS Foundation, 2022: 5682-5695.
|
17. |
Madl T. Exploring neural markers of dereification in meditation based on EEG and personalized models of electrophysiological brain states. Sci Rep, 2024, 14(1): 24264.
|
18. |
Chen Z, Xia J, Li J, et al. Generalized open-set domain adaptation in mechanical fault diagnosis using multiple metric weighting learning network. Adv Eng Inform, 2023, 57: 102033.
|
19. |
Sicilia A, Zhao X, Hwang S J. Domain adversarial neural networks for domain generalization: When it works and how to improve. Mach Learn, 2023, 112(7): 2685-2721.
|
20. |
Zhou F, Chen H. Cross-modal translation and alignment for survival analysis// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE/Computer Vision Foundation, 2023: 21485-21494.
|
21. |
Mao A, Mohri M, Zhong Y. Cross-entropy loss functions: Theoretical analysis and applications// Proceedings of the 40th International Conference on Machine Learning. Honolulu: International Machine Learning Society, 2023: 23803-23828.
|
22. |
Nishabh K, Kshitija A N. A systematic review on clinical research and approval process. Asian J Pharm Res Dev, 2023, 11(1): 39-51.
|
23. |
Gorgoni M, Salfi F, De Gennaro L, et al. Electroencephalographic and neurophysiological changes// Kerkhof G A, Van Dongen H P A. Encyclopedia of sleep and circadian rhythms. Second Edition. Oxford: Elsevier, Academic Press, 2023, 1: 313-322.
|
24. |
Gou M, Zhang Y J, Dai R J, et al. Addressing temporal and auditory factors in meditative EEG with self-supervised learning// 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Lisbon: IEEE, 2024: 1954-1959.
|
25. |
Gou M, Yin H L, Lu B L, et al. Multi-modal adversarial regressive transformer for cross-subject fatigue detection// 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: IEEE, 2024: 1-4.
|
26. |
Liu G, Wen Y, Hsiao J H, et al. EEG-based familiar and unfamiliar face classification using filter-bank differential entropy features. IEEE Trans Hum Mach Syst, 2023, 54(1): 44-55.
|
27. |
Wong K, Dornberger R, Hanne T. An analysis of weight initialization methods in connection with different activation functions for feedforward neural networks. Evol Intell, 2024, 17(3): 2081-2089.
|
28. |
Han S, Qubo C, Meng H. Parameter selection in SVM with RBF kernel function// World Automation Congress 2012. Puerto Vallarta: IEEE, 2012: 1-4.
|
29. |
Abibullaev B, Keutayeva A, Zollanvari A. Deep learning in EEG-based BCIs: a comprehensive review of transformer models, advantages, challenges, and applications. IEEE Access, 2023, 11: 127271-127301.
|
30. |
Liao B, Tan S, Monz C. Make pre-trained model reversible: From parameter to memory efficient fine-tuning// Advances in Neural Information Processing Systems 36 (NeurIPS 2023). New Orleans: NeurIPS Foundation, 2023: 15186-15209.
|
31. |
Qian Q, Wang Y, Zhang T, et al. Maximum mean square discrepancy: a new discrepancy representation metric for mechanical fault transfer diagnosis. Knowl Based Syst, 2023, 276: 110748.
|
32. |
Meyes R, Lu M, Waubert de Puiseau C W, et al. Ablation studies in artificial neural networks. arXiv, 2019: 1901.08644.
|
33. |
Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks// Proceedings of the 34th International Conference on Machine Learning. Sydney: International Machine Learning Society, 2017: 3319-3328.
|
34. |
Sivaranjani S, Haldo J, Rithick R, et al. Analyzing EEG patterns as predictors of physiological responses// 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). Chennai: IEEE, 2024: 1-6.
|
35. |
Holas P, Kamińska J. Mindfulness meditation and psychedelics: potential synergies and commonalities. Pharmacol Rep, 2023, 75(6): 1398-1409.
|