1. |
McFarland D J, Wolpaw J R. Brain computer interfaces for communication and control. Communications of the ACM, 2011, 54(5): 60-66.
|
2. |
Cervera M A, Soekadar S R, Ushiba J, et al. Brain computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Annals of Clinical and Translational Neurology, 2018, 5(5): 651-663.
|
3. |
Ghosh R. A survey of brain computer interface using non-invasive methods. arXiv preprint, 2023, arXiv: 2309.13151.
|
4. |
Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 2017, 38(11): 5391-5420.
|
5. |
刘拓, 叶阳阳, 王坤, 等. 运动想象脑电信号分类算法的研究进展. 生物医学工程学杂志, 2021, 38(5): 995-1002.
|
6. |
Nazre R, Budke R, Oak O, et al. A temporal convolutional network-based approach for network intrusion detection. arXiv preprint, 2024, arXiv: 2412.17452.
|
7. |
Bhandari H C, Pandeya Y R, Jha K, et al. Exploring non-Euclidean approaches: a comprehensive survey on graph-based techniques for EEG signal Analysis. Journal of Advances in Information Technology, 2024, 15(10): 1089-1105.
|
8. |
Sun B, Zhang H, Wu Z, et al. Adaptive spatiotemporal graph convolutional networks for motor imagery classification. IEEE Signal Processing Letters, 2021, 28(1): 219-223.
|
9. |
Gao H, Wang X, Chen Z, et al. Graph convolutional network with connectivity uncertainty for EEG-based emotion recognition. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 5917-5928.
|
10. |
Wang A, Tian X, Jiang D, et al. Rehabilitation with brain computer interface and upper limb motor function in ischemic stroke: a randomized controlled trial. Med, 2024, 5(6): 559-569.
|
11. |
Birbaumer N, Weber C, Neuper C, et al. Physiological regulation of thinking: brain computer interface (BCI) research, Prog Brain Res, 2006, 159: 369-391.
|
12. |
Butet S, Fleury M, Duché Q, et al. EEG-fMRI neurofeedback versus motor imagery after stroke, a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 2025, 22: 67.
|
13. |
Kim M S, Park H, Kwon I, et al. Efficacy of brain computer interface training with motor imagery contingent feedback in improving upper limb function and neuroplasticity among persons with chronic stroke: a double blinded, parallel group, randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 2025, 22: 1.
|
14. |
Ang K K, Chin Z Y, Zhang H H, et al. Filter bank common spatial pattern (FBCSP) in brain computer interface//2008 IEEE International Joint Conference on Neural Networks (IJCNN), New York: IEEE, 2008: 2390-2397.
|
15. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2018, 15(5): 056013.
|
16. |
李卫校. 基于深度学习的运动想象脑电信号识别方法. 淮南: 安徽理工大学, 2024.
|
17. |
Bhatt M W, Sharma S. Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces. Journal of Neuroscience Methods, 2024, 408: 110182.
|
18. |
吕仁杰, 常文文, 严光辉, 等. 基于GAF与混合模型的运动想象分类研究. 电子科技大学学报, 2024, 53(6): 952-960.
|
19. |
Hamidi A, Kiani K. Motor imagery EEG signals classification using a Transformer-GCN approach. Applied Soft Computing, 2024, 170: 112686.
|
20. |
Brunner C, Leeb R, Müller-Putz G, et al. BCI Competition 2008-Graz data set A. (2008-07-03)[2008-12-12]. DOI: 10.21227/katb-zv89.
|
21. |
Wang Y. Research on event related desynchronization of motor imagery and movement based on localized EEG cortical sources. arXiv preprint, 2025, arXiv: 2502.19869.
|
22. |
肖健, 党选举. 多域特征融合的脑电信号肢体运动特征提取与动作识别. 电子测量技术, 2024, 47(18): 23-30.
|
23. |
刘童瑶. 基于机器学习的复杂信号调制识别技术研究. 成都: 电子科技大学, 2025.
|
24. |
高明星, 岳晶晶, 李鹏飞, 等. 基于ERP的草原公路自动驾驶接管认知特性研究. 内蒙古农业大学学报(自然科学版), 2024, 45(6): 69-75.
|
25. |
Li G, Huang S, Xu W, et al. The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG. BMC Neuroscience, 2020, 21: 20.
|
26. |
Wang J, Xu Y, Tian J, et al. Driving fatigue detection with three non-hair-bearing EEG channels and modified transformer model. Entropy, 2022, 24(12): 1715.
|