| 1. |
Chen J, Xu T, Zhou J, et al. The superiority of schroth exercise combined brace treatment for mild-to-moderate adolescent idiopathic scoliosis: a systematic review and network meta-analysis. World Neurosurg, 2024, 186: 184-196.
|
| 2. |
Grivas T B, Vasiliadis E, Chatzizrgiropoyos T, et al. The effect of a modified Boston brace with anti-rotatory blades on the progression of curves in idiopathic scoliosis: aetiologic implications. Pediatric Rehabilitation, 2003, 6(3-4): 237-242.
|
| 3. |
Cheng J C, Castelein R M, Chu W C, et al. Adolescent idiopathic scoliosis. Nature Reviews Disease Primers, 2015, 1: 15030.
|
| 4. |
Whitaker C M, Miyanji F, Samdani A F, et al. Prospectively collected comparison of outcomes between surgically and conservatively treated patients with adolescent idiopathic scoliosis. Spine, 2024, 49(17): 1210-1218.
|
| 5. |
Konieczny M R, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. Journal of Children's Orthopaedics, 2013, 7(1): 3-9.
|
| 6. |
苟春燕, 张玉婷, 聂国辉, 等. 三维打印椎间融合器的研究进展. 生物医学工程学杂志, 2021, 38(5): 1018-1027.
|
| 7. |
赵海恩, 任坤, 董鑫, 等. 单一体位下斜外侧腰椎椎间融合术联合椎间孔镜下减压治疗L_(5),S_(1)椎间盘突出伴椎管狭窄四例. 中国修复重建外科杂志, 2024, 38(7): 896-898.
|
| 8. |
孙彬. 3D打印拓扑优化个体化定制颈椎椎间融合器的研发及其生物力学研究. 长春: 吉林大学, 2023.
|
| 9. |
Ma Q, Miri Z, Haugen H J, et al. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. Journal of Tissue Engineering, 2023, 14: 20417314231172573.
|
| 10. |
武晓刚. 骨的多孔介质弹性力学行为及力—电效应研究. 太原: 太原理工大学, 2012.
|
| 11. |
Yang X, Fu R, Li P, et al. Biomechanical finite element analysis of bone tissues with different scales in the bone regeneration area after scoliosis surgery. Journal of Medical and Biological Engineering, 2024, 44: 401-411.
|
| 12. |
Duncan R L, Turner C H. Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International, 1995, 57(5): 344-358.
|
| 13. |
Olivares-Navarrete R, Gittens R A, Schneider J M, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. The Spine Journal, 2012, 12(3): 265-272.
|
| 14. |
王召耀, 富荣昌, 马原, 等. 特发性脊柱侧凸骨单元宏细观生物力学分析. 生物医学工程学杂志, 2023, 40(2): 303-312.
|
| 15. |
Wang Y, Dong H, Yan Y, et al. Biomechanical analysis of a lacunar-canalicular system under different cyclic displacement loading. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26(15): 1806-1821.
|
| 16. |
颜华东, 张中, 赵刚, 等. 有限元法分析不同固定方式在胫骨远端粉碎性骨折骨愈合中的生物力学差异. 中国组织工程研究, 2024, 28(24): 3814-3821.
|
| 17. |
Wang H, Fu R, Yang K. Kinetic characterization of adolescent scoliosis patients with Lenke 1B. Acta of Bioengineering & Biomechanics, 2024, 26(3): 75-86.
|
| 18. |
Zhang H, Fu R. Macro-meso-micro biomechanical analysis of the lumbar spine after pedicle subtraction osteotomy for idiopathic scoliosis. Journal of Shanghai Jiaotong University (Science), 2024. DOI: 10.1007/s12204-024-2788-y.
|
| 19. |
Guan T, Zhang Y F. Determination of three-dimensional corrective force in adolescent idiopathic scoliosis and biomechanical finite element analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8: 963.
|
| 20. |
Cao F, Fu R, Wang W. Comparison of biomechanical performance of single-level triangular and quadrilateral profile anterior cervical plates. PloS One, 2021, 16(4): e0250270.
|
| 21. |
卢昌怀, 刘志军, 晏峻峰, 等. Lenke1AN型青少年特发性脊柱侧凸不同置棒顺序矫形的有限元分析. 中国矫形外科杂志, 2019, 27(19): 1780-1784.
|
| 22. |
Wang Z, Fu R, Ye P. Topology optimization design and mechanical analysis of a personalized lumbar fusion device. Journal of Mechanics in Medicine and Biology, 2023, 24(3): 2350043.
|
| 23. |
龙登燕, 纪爱敏, 赵仲航, 等. 基于骨愈合过程的内固定物参数研究. 生物医学工程研究, 2019, 38(3): 286-291.
|
| 24. |
Wang L, Dong J, Xian C J. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study. BioMed Research International, 2015, 2015: 376474.
|
| 25. |
Markolf K L. Deformation of the thoracolumbar intervertebral joints in response to external loads: a biomechanical study using autopsy material. The Journal of Bone and Joint Surgery. American Volume, 1972, 54(3): 511-533.
|
| 26. |
王宏卫, 刘新宇, 万熠. 人体腰椎L4~L5段有限元模型建立及力学有效性验证. 医学与哲学(B), 2017, 38(5): 50-53.
|
| 27. |
Kallemeyn N A, Tadepalli S C, Shivanna K H, et al. An interactive multiblock approach to meshing the spine. Computer Methods and Programs in Biomedicine, 2009, 95(3): 227-235.
|
| 28. |
Bozyiğit B, Oymak M A, Bahçe E et al. Finite element analysis of lattice designed lumbar interbody cage based on the additive manufacturing. Proc Inst Mech Eng H, 2023, 237(8): 991-1000.
|
| 29. |
Momeni Shahraki N, Fatemi A, Goel VK, et al. On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Frontiers in Bioengineering and Biotechnology, 2015, 3: 69.
|
| 30. |
Spilker R L, Simon B R. Computational methods in bioengineering. England: ASME, 1988: 135-144.
|
| 31. |
Markolf K L, Morris J M. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am, 1974, 56(4): 675-687.
|
| 32. |
Brown T, Hansen R J, Yorra A J. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. J Bone Joint Surg Am, 1957, 39(5): 1135-1164.
|
| 33. |
Yamamoto I, Panjabi M M, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine, 1989, 14(11): 1256-1260.
|
| 34. |
方新果, 赵改平, 王晨曦, 等. 基于CT图像腰椎L4L5节段有限元模型建立与分析. 中国生物医学工程学报, 2014, 33(4): 487-492.
|
| 35. |
Schultz A B, Warwick D N, Berkson M H, et al. Mechanical properties of human lumbar spine motion segments-part I: responses in flexion, extension, bilateral lateral bending and torsin. Journal of Biomechanical Engineering, 1979, 101(1): 46-52.
|
| 36. |
Chen C S, Cheng C K, Liu C L, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics, 2001, 23(7): 483-491.
|
| 37. |
Frost M H. A 2003 update of bone physiology and Wolff's Law for clinicians. The Angle Orthodontist, 2004, 74(1): 3-15.
|