体外循环(extracorporeal circulation,ECC)是心脏直视手术不可或缺的辅助及治疗手段。但同时,ECC 带来的全身炎症反应及多器官损伤也给临床提出了挑战。急性肾损伤(acute kidney injury,AKI)是 ECC 术后主要的并发症及死亡原因之一,不仅增加住院时间和住院费用,还明显增加术后患者的病死率,极大地威胁着临床患者的预后。然而,目前国内外针对 ECC 相关 AKI 的治疗手段十分有限,主要集中于围手术期药物使用及肾替代治疗等对症支持治疗两个方面。尽管目前的治疗大多集中于 AKI 的损伤期,内源性细胞修复及以细胞为基础的治疗方案受到越来越多的重视。最新的研究发现干细胞在ECC相关肾损伤的修复过程中发挥着重要的作用。该文对 ECC 相关 AKI 与干细胞治疗研究进展进行了综述。
Citation:
赵俊飞, 安琪.
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure follow-ing cardiac surgery. Nephrol Dial Transplant, 1999, 14(5): 1158-1162. |
2. | Mangano CM, Diamondstone LS, Ramsay JG, et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med, 1998, 128(3): 194-203. |
3. | Abel RM, Buckley MJ, Austen WG, et al. Etiology, incidence, and prognosis of renal failure following cardiac operations. Results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg, 1976, 71(3): 323-333. |
4. | Gailiunas P Jr, Chawla R, Lazarus JM, et al. Acute renal failure following cardiac operations. J Thorac Cardiovasc Surg, 1980, 79(2): 241-243. |
5. | Ostermann ME, Taube D, Morgan CJ, et al. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med, 2000, 26(5): 565-571. |
6. | Andersson LG, Ekroth R, Bratteby LE, et al. Acute renal failure after coronary surgery--a study of incidence and risk factors in 2009 consecutive patients. Thorac Cardiovasc Surg, 1993, 41(4): 237-241. |
7. | Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg, 1994, 107(6): 1489-1495. |
8. | Mangos GJ, Brown MA, Chan WY, et al. Acute renal failure following cardiac surgery: Incidence, outcomes and risk factors. Aust N Z J Med, 1995, 25(4): 284-289. |
9. | Antunes PE, Prieto D, Ferrão de Oliveira J, et al. Renal dysfunction after myocardial revascularization. Eur J Cardiothorac, 2004, 25(4): 597-604. |
10. | Yeboah ED, Petrie A, Pead JL. Acute renal failure and open heart surgery. Br Med J, 1972, 1(5797): 415-418. |
11. | Bhat JG, Gluck MC, Lowenstein J, et al. Renal failure after open heart surgery. Ann Intern Med, 1976, 84(6): 677-682. |
12. | Hilberman M, Myers BD, Carrie BJ, et al. Acute renal failure following cardiac surgery. J Thorac Cardiovasc Surg, 1979, 77(6): 880-888. |
13. | Corwin HL, Sprague SM, Delaria GA, et al. Acute renal failure associated with cardiac operations. A case-control study. J Thorac Cardiovasc Surg, 1989, 98(6): 1107-1112. |
14. | Schmitt H, Riehl J, Boseilla A, et al. Acute renal failure following cardiac surgery: pre-and perioperative clinical features. Contrib Nephrol, 1991(93): 98-104. |
15. | Chertow GM, Levy EM, Hammermeister K, et al. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med, 1998, 104(4): 343-348. |
16. | 急性肾损伤专家共识小组. 急性肾损伤诊断与分类专家共识. 中华肾脏病杂志, 2006, 22(11): 661-663. |
17. | Grayson AD, Khater M, Jackson M, et al. Valvular heart operation is an Independent risk factor for acute renal failure. Ann Thorac Sutg, 2003, 75(6): 1829-1835. |
18. | Elahi M, Asopa S, Pflueger A, et al. Acute kidney injury following cardiac surgery: impact of early versus late haemofiltration on morbidity and mortality. Eur J Cardiothorac Surg, 2009, 35(5): 854-863. |
19. | Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol, 2004, 15(6): 1597-1605. |
20. | Mancini E, Caramelli F, Ranucci M, et al. Is time on cardiopulmonary bypass during cardiac surgery associated with acute kidney injury requiring dialysis?. Hemodial Int, 2012, 16(2): 252-258. |
21. | Moran SM, Myers BD. Pathophysiology of protracted acute renal failure in man. J Clin Invest, 1985, 76(4): 1440-1448. |
22. | Parolari A, Alamanni F, Gherli T, et al. Cardiopulmonary bypass and oxygen consumption: oxygen delivery and hemodynamcs. Ann Thorac Surg, 1999, 67(5): 1320-1327. |
23. | Kirklin JW, Barratt Boyes BG. Cardiac Surgery. 2nd Ed. New York, Churchill Livingstone, 1993: 80. |
24. | Rudy LW Jr, Heymann MA, Edmunds LH Jr. Distribution of systemic blood flow during cardiopulmonary bypass. J Appl Physiol, 1973, 34(2): 194-200. |
25. | Harris EA, Seelye ER, Barratt-Boyes BG. On the availability of oxygen to the body during cardiopulmonary bypass in man. Br J Anaesth, 1974, 46(6): 425-431. |
26. | Urzua J, Troncoso S, Bugedo G, et al. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth, 1992, 6(3): 299-303. |
27. | Fransen E, Maessen J, Dentener M, et al. Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest, 1998, 113(5): 1290-1295. |
28. | Asimakopoulos G, Taylor KM. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg, 1998, 66(6): 2135-2144. |
29. | Galiñanes M, Watson C, Trivedi U, et al. Differential patterns of neutrophil adhesion molecules during cardiopulmonary bypass in humans. Circulation, 1996, 94(Suppl 9): 364-369. |
30. | Zilla P, Fasol R, Groscurth P, et al. Blood platelets in cardiopulmonary bypass operations. Recovery occurs after initial stimulation, rather than continual activation. J Thorac Cardiovasc Surg, 1989, 97(3): 379-88. |
31. | Haga Y, Hatori N, Yoshizu H, et al. Granulocyte superoxide anion and elastase release during cardiopulmonary bypass. Artif Organs, 1993, 17(10): 837-842. |
32. | Faymonville ME, Pincemail J, Duchateau J, et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. J Thorac Cardiovasc Surg, 1991, 102(2): 309-317. |
33. | Frering B, Philip I, Dehoux M, et al. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1994, 108(4): 636-41. |
34. | Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg, 2002, 21(2): 232-244. |
35. | Rustom R, Grime S, Maltby P, et al. Observations on the early renal uptake and later tubular metabolism of radiolabelled aprotinin (Trasylol) in man: theoretical and practical considerations. Clin Sci (Lond), 1993, 84(2): 231-235. |
36. | Kramer J, Moch T, Von Sicherer L, et al. Effects of aprotinin on renal function and urinary prostaglandin excretion in conscious rats after acute salt loading. Clin Sci (Lond), 1979, 56(6): 547-553. |
37. | Mora Mangano CT, Neville MJ, Hsu PH, et al. Aprotinin, blood loss, and renal dysfunction in deep hypothermic circulatory arrest. Circulation, 2001, 104(Suppl 12): I247-I255. |
38. | Molenaar IQ, Begliomini B, Grazi GL, et al. The effect of aprotinin on renal function in orthotopic liver transplantation. Transplantation, 2001, 71(2): 247-252. |
39. | Musial J, Niewiarowski S, Hershock D, et al. Loss of fibrinogen receptors from the platelet surface during simulated extracorporeal circulation. J Lab Clin Med, 1985, 105(4): 514-522. |
40. | Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1983, 86(6): 845-857. |
41. | Burne-Taney MJ, Rabb H. The role of adhesion molecules and T cells in ischemic renal injury. Curr Opin Nephrol Hypertens, 2003, 12(1): 85-90. |
42. | Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens, 2000, 9(4): 427-434. |
43. | Lassnigg A, Donner E, Grubhofer G, et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol, 2000, 11(1): 97-104. |
44. | Mahesh B, Yim B, Robson D, et al. Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg, 2008, 33(3): 370-376. |
45. | Friedrich JO1, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med, 2005, 142(7): 510-524. |
46. | Tang AT, El-Gamel A, Keevil B, et al. The effect of “renal-dose” dopamine on renal tubular function following cardiac surgery: assessed by measuring retinol binding protein (RBP). Eur J Cardiothorac Surg, 1999, 15(5): 717-721. |
47. | Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth, 2003, 17(4): 491-494. |
48. | Bove T, Landoni G, Calabrò MG, et al. Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation, 2005, 111(24): 3230-3235. |
49. | Hörbelt M, Lee SY, Mang HE, et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol, 2007, 293(3): F688-F695. |
50. | Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol, 2003, 14(12): 3138-3146. |
51. | Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest, 2005, 115(7): 1743-1755. |
52. | Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest, 2005, 115(7): 1756-1764. |
53. | Oliver JA, Maarouf O, Cheema FH, et al. The renal papilla is a niche for adult kidney stem cells. J Clin Invest, 2004, 114(6): 795-804. |
54. | Sagrinati C. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol, 2006, 17(9): 2443-2456. |
55. | Romagnani P, Kalluri R. Possible mechanisms of kidney repair. Fibrogenesis Tissue Repair, 2009, 2(1): 3. |
56. | Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol, 2009, 20(2): 322-332. |
57. | Appel D, Kershaw DB, Smeets B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol, 2009, 20(2): 333-343. |
58. | Lagaaij EL, Cramer-Knijnenburg GF, Van Kemenade FJ, et al. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet, 2001, 357(9249): 33-37. |
59. | Prodromidi EI, Poulsom R, Jeffery R, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells, 2006, 24(11): 2448-2455. |
60. | Sugimoto H, Mundel TM, Sund M, et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA, 2006, 103(19): 7321-7326. |
61. | Yokoo T, Ohashi T, Utsunomiya Y, et al. Prophylaxis of antibody-induced acute glomerulonephritis with genetically modified bone marrow-derived vehicle cells. Hum Gene Ther, 1999, 10(16): 2673-2678. |
62. | Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol, 2004, 15(7): 1794-1804. |
63. | Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med, 2004, 14(6): 1035-1041. |
64. | Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation, 2003, 108(21): 2710-2715. |
65. | Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells, 2011, 29(11): 1650-1655. |
66. | Hohenstein B, Kuo MC, Addabbo F, et al. Enhanced progenitor cell recruitment and endothelial repair after selective endothelial injury of the mouse kidney. Am J Physiol Renal Physiol, 2010, 298(6): F1504-F1514. |
67. | Patschan D, Krupincza K, Patschan S, et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol, 2006, 291(1): F176-F185. |
68. | Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133⁺ progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res, 2014, 115(11): 950-960. |
69. | Schots R, De Keulenaer G, Schoors D, et al. Evidence that intracoronary-injected CD133+ peripheral blood progenitor cells home to the myocardium in chronic postinfarction heart failure. Exp Hematol, 2007, 35(12): 1884-1890. |
70. | Grange C, Moggio A, Tapparo M, et al. Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model. Physiol Rep, 2014, 2(5): e12009. |
71. | Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int, 2001, 59(6): 2023-2038. |
72. | Giron-Michel J, Azzi S, Ferrini S, et al. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev, 2013, 24(1): 13-22. |
- 1. Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure follow-ing cardiac surgery. Nephrol Dial Transplant, 1999, 14(5): 1158-1162.
- 2. Mangano CM, Diamondstone LS, Ramsay JG, et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med, 1998, 128(3): 194-203.
- 3. Abel RM, Buckley MJ, Austen WG, et al. Etiology, incidence, and prognosis of renal failure following cardiac operations. Results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg, 1976, 71(3): 323-333.
- 4. Gailiunas P Jr, Chawla R, Lazarus JM, et al. Acute renal failure following cardiac operations. J Thorac Cardiovasc Surg, 1980, 79(2): 241-243.
- 5. Ostermann ME, Taube D, Morgan CJ, et al. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med, 2000, 26(5): 565-571.
- 6. Andersson LG, Ekroth R, Bratteby LE, et al. Acute renal failure after coronary surgery--a study of incidence and risk factors in 2009 consecutive patients. Thorac Cardiovasc Surg, 1993, 41(4): 237-241.
- 7. Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg, 1994, 107(6): 1489-1495.
- 8. Mangos GJ, Brown MA, Chan WY, et al. Acute renal failure following cardiac surgery: Incidence, outcomes and risk factors. Aust N Z J Med, 1995, 25(4): 284-289.
- 9. Antunes PE, Prieto D, Ferrão de Oliveira J, et al. Renal dysfunction after myocardial revascularization. Eur J Cardiothorac, 2004, 25(4): 597-604.
- 10. Yeboah ED, Petrie A, Pead JL. Acute renal failure and open heart surgery. Br Med J, 1972, 1(5797): 415-418.
- 11. Bhat JG, Gluck MC, Lowenstein J, et al. Renal failure after open heart surgery. Ann Intern Med, 1976, 84(6): 677-682.
- 12. Hilberman M, Myers BD, Carrie BJ, et al. Acute renal failure following cardiac surgery. J Thorac Cardiovasc Surg, 1979, 77(6): 880-888.
- 13. Corwin HL, Sprague SM, Delaria GA, et al. Acute renal failure associated with cardiac operations. A case-control study. J Thorac Cardiovasc Surg, 1989, 98(6): 1107-1112.
- 14. Schmitt H, Riehl J, Boseilla A, et al. Acute renal failure following cardiac surgery: pre-and perioperative clinical features. Contrib Nephrol, 1991(93): 98-104.
- 15. Chertow GM, Levy EM, Hammermeister K, et al. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med, 1998, 104(4): 343-348.
- 16. 急性肾损伤专家共识小组. 急性肾损伤诊断与分类专家共识. 中华肾脏病杂志, 2006, 22(11): 661-663.
- 17. Grayson AD, Khater M, Jackson M, et al. Valvular heart operation is an Independent risk factor for acute renal failure. Ann Thorac Sutg, 2003, 75(6): 1829-1835.
- 18. Elahi M, Asopa S, Pflueger A, et al. Acute kidney injury following cardiac surgery: impact of early versus late haemofiltration on morbidity and mortality. Eur J Cardiothorac Surg, 2009, 35(5): 854-863.
- 19. Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol, 2004, 15(6): 1597-1605.
- 20. Mancini E, Caramelli F, Ranucci M, et al. Is time on cardiopulmonary bypass during cardiac surgery associated with acute kidney injury requiring dialysis?. Hemodial Int, 2012, 16(2): 252-258.
- 21. Moran SM, Myers BD. Pathophysiology of protracted acute renal failure in man. J Clin Invest, 1985, 76(4): 1440-1448.
- 22. Parolari A, Alamanni F, Gherli T, et al. Cardiopulmonary bypass and oxygen consumption: oxygen delivery and hemodynamcs. Ann Thorac Surg, 1999, 67(5): 1320-1327.
- 23. Kirklin JW, Barratt Boyes BG. Cardiac Surgery. 2nd Ed. New York, Churchill Livingstone, 1993: 80.
- 24. Rudy LW Jr, Heymann MA, Edmunds LH Jr. Distribution of systemic blood flow during cardiopulmonary bypass. J Appl Physiol, 1973, 34(2): 194-200.
- 25. Harris EA, Seelye ER, Barratt-Boyes BG. On the availability of oxygen to the body during cardiopulmonary bypass in man. Br J Anaesth, 1974, 46(6): 425-431.
- 26. Urzua J, Troncoso S, Bugedo G, et al. Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth, 1992, 6(3): 299-303.
- 27. Fransen E, Maessen J, Dentener M, et al. Systemic inflammation present in patients undergoing CABG without extracorporeal circulation. Chest, 1998, 113(5): 1290-1295.
- 28. Asimakopoulos G, Taylor KM. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg, 1998, 66(6): 2135-2144.
- 29. Galiñanes M, Watson C, Trivedi U, et al. Differential patterns of neutrophil adhesion molecules during cardiopulmonary bypass in humans. Circulation, 1996, 94(Suppl 9): 364-369.
- 30. Zilla P, Fasol R, Groscurth P, et al. Blood platelets in cardiopulmonary bypass operations. Recovery occurs after initial stimulation, rather than continual activation. J Thorac Cardiovasc Surg, 1989, 97(3): 379-88.
- 31. Haga Y, Hatori N, Yoshizu H, et al. Granulocyte superoxide anion and elastase release during cardiopulmonary bypass. Artif Organs, 1993, 17(10): 837-842.
- 32. Faymonville ME, Pincemail J, Duchateau J, et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. J Thorac Cardiovasc Surg, 1991, 102(2): 309-317.
- 33. Frering B, Philip I, Dehoux M, et al. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1994, 108(4): 636-41.
- 34. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg, 2002, 21(2): 232-244.
- 35. Rustom R, Grime S, Maltby P, et al. Observations on the early renal uptake and later tubular metabolism of radiolabelled aprotinin (Trasylol) in man: theoretical and practical considerations. Clin Sci (Lond), 1993, 84(2): 231-235.
- 36. Kramer J, Moch T, Von Sicherer L, et al. Effects of aprotinin on renal function and urinary prostaglandin excretion in conscious rats after acute salt loading. Clin Sci (Lond), 1979, 56(6): 547-553.
- 37. Mora Mangano CT, Neville MJ, Hsu PH, et al. Aprotinin, blood loss, and renal dysfunction in deep hypothermic circulatory arrest. Circulation, 2001, 104(Suppl 12): I247-I255.
- 38. Molenaar IQ, Begliomini B, Grazi GL, et al. The effect of aprotinin on renal function in orthotopic liver transplantation. Transplantation, 2001, 71(2): 247-252.
- 39. Musial J, Niewiarowski S, Hershock D, et al. Loss of fibrinogen receptors from the platelet surface during simulated extracorporeal circulation. J Lab Clin Med, 1985, 105(4): 514-522.
- 40. Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg, 1983, 86(6): 845-857.
- 41. Burne-Taney MJ, Rabb H. The role of adhesion molecules and T cells in ischemic renal injury. Curr Opin Nephrol Hypertens, 2003, 12(1): 85-90.
- 42. Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens, 2000, 9(4): 427-434.
- 43. Lassnigg A, Donner E, Grubhofer G, et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol, 2000, 11(1): 97-104.
- 44. Mahesh B, Yim B, Robson D, et al. Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg, 2008, 33(3): 370-376.
- 45. Friedrich JO1, Adhikari N, Herridge MS, et al. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med, 2005, 142(7): 510-524.
- 46. Tang AT, El-Gamel A, Keevil B, et al. The effect of “renal-dose” dopamine on renal tubular function following cardiac surgery: assessed by measuring retinol binding protein (RBP). Eur J Cardiothorac Surg, 1999, 15(5): 717-721.
- 47. Caimmi PP, Pagani L, Micalizzi E, et al. Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth, 2003, 17(4): 491-494.
- 48. Bove T, Landoni G, Calabrò MG, et al. Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation, 2005, 111(24): 3230-3235.
- 49. Hörbelt M, Lee SY, Mang HE, et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol, 2007, 293(3): F688-F695.
- 50. Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol, 2003, 14(12): 3138-3146.
- 51. Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest, 2005, 115(7): 1743-1755.
- 52. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest, 2005, 115(7): 1756-1764.
- 53. Oliver JA, Maarouf O, Cheema FH, et al. The renal papilla is a niche for adult kidney stem cells. J Clin Invest, 2004, 114(6): 795-804.
- 54. Sagrinati C. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol, 2006, 17(9): 2443-2456.
- 55. Romagnani P, Kalluri R. Possible mechanisms of kidney repair. Fibrogenesis Tissue Repair, 2009, 2(1): 3.
- 56. Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol, 2009, 20(2): 322-332.
- 57. Appel D, Kershaw DB, Smeets B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol, 2009, 20(2): 333-343.
- 58. Lagaaij EL, Cramer-Knijnenburg GF, Van Kemenade FJ, et al. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet, 2001, 357(9249): 33-37.
- 59. Prodromidi EI, Poulsom R, Jeffery R, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells, 2006, 24(11): 2448-2455.
- 60. Sugimoto H, Mundel TM, Sund M, et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA, 2006, 103(19): 7321-7326.
- 61. Yokoo T, Ohashi T, Utsunomiya Y, et al. Prophylaxis of antibody-induced acute glomerulonephritis with genetically modified bone marrow-derived vehicle cells. Hum Gene Ther, 1999, 10(16): 2673-2678.
- 62. Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol, 2004, 15(7): 1794-1804.
- 63. Herrera MB, Bussolati B, Bruno S, et al. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med, 2004, 14(6): 1035-1041.
- 64. Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation, 2003, 108(21): 2710-2715.
- 65. Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells, 2011, 29(11): 1650-1655.
- 66. Hohenstein B, Kuo MC, Addabbo F, et al. Enhanced progenitor cell recruitment and endothelial repair after selective endothelial injury of the mouse kidney. Am J Physiol Renal Physiol, 2010, 298(6): F1504-F1514.
- 67. Patschan D, Krupincza K, Patschan S, et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol, 2006, 291(1): F176-F185.
- 68. Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133⁺ progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res, 2014, 115(11): 950-960.
- 69. Schots R, De Keulenaer G, Schoors D, et al. Evidence that intracoronary-injected CD133+ peripheral blood progenitor cells home to the myocardium in chronic postinfarction heart failure. Exp Hematol, 2007, 35(12): 1884-1890.
- 70. Grange C, Moggio A, Tapparo M, et al. Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model. Physiol Rep, 2014, 2(5): e12009.
- 71. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int, 2001, 59(6): 2023-2038.
- 72. Giron-Michel J, Azzi S, Ferrini S, et al. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev, 2013, 24(1): 13-22.