适度饮食节制、诱导基因突变或使用化学制剂降低对营养敏感信号通路的活性,均有助于生物延长寿命。对于啮齿动物,降低营养敏感通路的活性可减少包括肿瘤和神经退行性疾病在内的年龄相关疾病的发生率。对于人类,饮食节制可在增加寿命的同时,帮助预防心血管疾病、糖尿病和癌症。诱导生长激素、雷帕霉素受体相关的营养敏感通路突变则可减少糖尿病和肿瘤发生,促使寿命延长。可见控制饮食摄入和降低营养敏感通路的活性,两者减缓衰老的作用机制存在相似之处,且在进化中是相对保守的。该文将分析相关研究的结果,探讨饮食节制及相关营养敏感通路在干预生物衰老及年龄相关疾病方面的潜在应用价值。
Citation: 林子嫱, 胡秀英. 饮食节制及营养敏感通路对生物寿命的影响. West China Medical Journal, 2017, 32(7): 1116-1119. doi: 10.7507/1002-0179.201605105 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA, 2007, 297(9): 986-994. |
2. | Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000Res, 2016, 5. |
3. | Longo VD. Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol, 2009, 44(1/2): 70-74. |
4. | Gillespie ZE, Pickering J, Eskiw CH. Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Front Genet, 2016, 7: 142. |
5. | Yan L, Park JY, Dillinger JG, et al. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. Aging Cell, 2012, 11(6): 1110-1120. |
6. | Chrysohoou C, Stefanadis C. Longevity and diet. Myth or pragmatism?. Maturitas, 2013, 76(4): 303-307. |
7. | Piper MD, Partridge L. Dietary restriction in Drosophila: delayed aging or experimental artefact?. PLoS Genet, 2007, 3(4): e57. |
8. | Zhang JJ, Liu F. Tissue-Specific insulin signaling in the regulation of metabolism and aging. IUBMB Life, 2014, 66(7): 485-495. |
9. | Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990. |
10. | Zhang YQ, Bokov A, Gelfond J, et al. Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci, 2014, 69(2): 119-130. |
11. | Busch F, Mobasheri A, Shayan P, et al. Resveratrol modulates interleukin-1 beta-induced phosphatidylinositol 3-kinase and nuclear factor kappa B signaling pathways in human tenocytes. J Biol Chem, 2012, 287(45): 38050-38063. |
12. | Wang J, Liu YT, Xiao L, et al. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation, 2014, 37(6): 2085-2090. |
13. | Han SG, Han SS, Toborek M, et al. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol, 2012, 261(2): 181-188. |
14. | Arunachalam G, Samuel SM, Marei I, et al. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol, 2014, 171(2): 523-535. |
15. | Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology, 2005, 146(9): 3718-3723. |
16. | Fontana L, Villareal DT, Das SK, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell, 2016, 15(1): 22-27. |
17. | Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci, 2012, 67(6): 652-660. |
18. | Brown-Borg HM. Hormonal regulation of longevity in mammals. Ageing Res Rev, 2007, 6(1): 28-45. |
19. | Cabelof DC, Yanamadala S, Raffoul JJ, et al. Caloric restriction promotes genomic stability by induction of base excision, repair and reversal of its age-related decline. DNA Repair (Amst), 2003, 2(3): 295-307. |
20. | Amador-Noguez AD. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell, 2007, 6(4): 453-470. |
21. | Stein S, Matter CM. Protective roles of SIRT1 in atherosclerosis. Cell Cycle, 2011, 10(4): 640-647. |
22. | Selman C, Tullet JM, Wieser D, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 2009, 326(5949): 140-144. |
23. | Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460(7253): 392-395. |
24. | Anderson RM, Shanmuganayagam D, Weindruch R. Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol, 2009, 37(1): 47-51. |
25. | Shimokawa I, Higami Y, Hubbard GB, et al. Diet and the suitability of the male Fischer 344 rat as a model for aging research. J Gerontol, 1993, 48(1): B27-B32. |
26. | Garcia AM, Busuttil RA, Calder RB, et al. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech Ageing Dev, 2008, 129(9): 528-533. |
27. | Patel NV, Gordon MN, Connor KE, et al. Caloric restriction attenuates A beta-deposition in Alzheimer transgenic models. Neurobiol Aging, 2005, 26(7): 995-1000. |
28. | Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell, 2009, 139(6): 1157-1169. |
29. | Raffaghello L. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci USA, 2008, 105(24): 8215-8220. |
30. | Reed JM. Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mech Ageing Dev, 1996, 89(1): 21-43. |
31. | Kristan MD. Calorie restriction and susceptibility to intact pathogens. Age (Dordr), 2008, 30(2/3): 147-156. |
32. | Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res, 2007, 17(1): 54-57. |
33. | Oliveira JL, Aguiar-Oliveira MH, D’Oliveira A Jr, et al. Congenital growth hormone (GH) deficiency and atherosclerosis: effects of GH replacement in GH-Naive adults. J Clin Endocrinol Metab, 2007, 92(12): 4664-4670. |
34. | Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA, 2008, 105(9): 3438-3442. |
35. | Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab, 2003, 88(7): 3299-3304. |
36. | Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325(5937): 201-204. |
37. | Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12): 2063-2069. |
38. | Fontana L, Weiss EP, Villareal DT, et al. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell, 2008, 7(5): 681-687. |
39. | Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature, 2009, 462(7276): 1061-1064. |
40. | Fontana L, Meyer TE, Klein S, et al. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA, 2004, 101(17): 6659-6663. |
41. | Gowans GJ, Hardie DG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans, 2014, 42(1): 71-75. |
42. | Verges B, Cariou B. mTOR inhibitors and diabetes. Diabetes Res Clin Pract, 2015, 110(2): 101-108. |
43. | Massacesi C, Di Tomaso E, Urban PA, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther, 2016, 9(9): 203-210. |
44. | Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci, 2013, 126(8): 1713-1719. |
45. | Wang F, Chan CH, Chen K, et al. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene, 2012, 31(12): 1546-1557. |
46. | Shimokawa I, Komatsu T, Hayashi N, et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell, 2015, 14(4): 707-709. |
47. | Takeda-Watanabe A, Kitada M, Kanasaki K, et al. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun, 2012, 427(1): 191-196. |
48. | Shin, JY. Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells. Curr Eye Res, 2011, 36(12): 1116-1122. |
49. | Suzuki M, Endo M, Shinohara F, et al. Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells. Cancer Chemother Pharmacol, 2011, 67(5): 1129-1136. |
50. | Kofman AE, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY), 2012, 4(4): 279-289. |
51. | Das A, Durrant D, Koka S, et al. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem, 2014, 289(7): 4145-4160. |
52. | Cao K, Graziotto JJ, Blair CD, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med, 2011, 3(89): 89ra58. |
53. | Santos RX, Correia SC, Cardoso SA, et al. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer’s disease. J Neurochem, 2011, 117(6): 927-936. |
54. | Lee HJ, Jung H, Kwon J, et al. A germacranolide sesquiterpene lactone suppressed inducible nitric oxide synthase by downregulating NF-kappa B activity. Can J Physiol Pharmacol, 2011, 89(3): 232-237. |
55. | Chin YT, Hsieh MT, Yang SH, et al. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget, 2014, 5(24): 12891-12907. |
56. | Narayanan BA, Narayanan NK, Re GG, et al. Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer, 2003, 104(2): 204-212. |
57. | Xia N, Strand S, Schlufter F, et al. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, 2013, 32(32): 29-35. |
58. | Jiang J, Mo ZC, Yin K, et al. Epigallocatechin-3-gallate prevents TNF-alpha-induced NF-kappa B activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells. Int J Mol Med, 2012, 29(5): 946-956. |
59. | Jung KJ, Kim JY, Zou Y, et al. Effect of short-term, low dose aspirin supplementation on the activation of pro-inflammatory NF-kappa B in aged rats. Mech Ageing Dev, 2006, 127(3): 223-230. |
60. | Xu W, Deng YY, Yang L, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res, 2015, 166(5): 451-458. |
61. | Ikeno Y, Hubbard GB, Lee S, et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci, 2009, 64(5): 522-529. |
- 1. Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA, 2007, 297(9): 986-994.
- 2. Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000Res, 2016, 5.
- 3. Longo VD. Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol, 2009, 44(1/2): 70-74.
- 4. Gillespie ZE, Pickering J, Eskiw CH. Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Front Genet, 2016, 7: 142.
- 5. Yan L, Park JY, Dillinger JG, et al. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. Aging Cell, 2012, 11(6): 1110-1120.
- 6. Chrysohoou C, Stefanadis C. Longevity and diet. Myth or pragmatism?. Maturitas, 2013, 76(4): 303-307.
- 7. Piper MD, Partridge L. Dietary restriction in Drosophila: delayed aging or experimental artefact?. PLoS Genet, 2007, 3(4): e57.
- 8. Zhang JJ, Liu F. Tissue-Specific insulin signaling in the regulation of metabolism and aging. IUBMB Life, 2014, 66(7): 485-495.
- 9. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990.
- 10. Zhang YQ, Bokov A, Gelfond J, et al. Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci, 2014, 69(2): 119-130.
- 11. Busch F, Mobasheri A, Shayan P, et al. Resveratrol modulates interleukin-1 beta-induced phosphatidylinositol 3-kinase and nuclear factor kappa B signaling pathways in human tenocytes. J Biol Chem, 2012, 287(45): 38050-38063.
- 12. Wang J, Liu YT, Xiao L, et al. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation, 2014, 37(6): 2085-2090.
- 13. Han SG, Han SS, Toborek M, et al. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol, 2012, 261(2): 181-188.
- 14. Arunachalam G, Samuel SM, Marei I, et al. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol, 2014, 171(2): 523-535.
- 15. Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology, 2005, 146(9): 3718-3723.
- 16. Fontana L, Villareal DT, Das SK, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell, 2016, 15(1): 22-27.
- 17. Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci, 2012, 67(6): 652-660.
- 18. Brown-Borg HM. Hormonal regulation of longevity in mammals. Ageing Res Rev, 2007, 6(1): 28-45.
- 19. Cabelof DC, Yanamadala S, Raffoul JJ, et al. Caloric restriction promotes genomic stability by induction of base excision, repair and reversal of its age-related decline. DNA Repair (Amst), 2003, 2(3): 295-307.
- 20. Amador-Noguez AD. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell, 2007, 6(4): 453-470.
- 21. Stein S, Matter CM. Protective roles of SIRT1 in atherosclerosis. Cell Cycle, 2011, 10(4): 640-647.
- 22. Selman C, Tullet JM, Wieser D, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 2009, 326(5949): 140-144.
- 23. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460(7253): 392-395.
- 24. Anderson RM, Shanmuganayagam D, Weindruch R. Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol, 2009, 37(1): 47-51.
- 25. Shimokawa I, Higami Y, Hubbard GB, et al. Diet and the suitability of the male Fischer 344 rat as a model for aging research. J Gerontol, 1993, 48(1): B27-B32.
- 26. Garcia AM, Busuttil RA, Calder RB, et al. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech Ageing Dev, 2008, 129(9): 528-533.
- 27. Patel NV, Gordon MN, Connor KE, et al. Caloric restriction attenuates A beta-deposition in Alzheimer transgenic models. Neurobiol Aging, 2005, 26(7): 995-1000.
- 28. Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell, 2009, 139(6): 1157-1169.
- 29. Raffaghello L. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci USA, 2008, 105(24): 8215-8220.
- 30. Reed JM. Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mech Ageing Dev, 1996, 89(1): 21-43.
- 31. Kristan MD. Calorie restriction and susceptibility to intact pathogens. Age (Dordr), 2008, 30(2/3): 147-156.
- 32. Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res, 2007, 17(1): 54-57.
- 33. Oliveira JL, Aguiar-Oliveira MH, D’Oliveira A Jr, et al. Congenital growth hormone (GH) deficiency and atherosclerosis: effects of GH replacement in GH-Naive adults. J Clin Endocrinol Metab, 2007, 92(12): 4664-4670.
- 34. Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA, 2008, 105(9): 3438-3442.
- 35. Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab, 2003, 88(7): 3299-3304.
- 36. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325(5937): 201-204.
- 37. Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12): 2063-2069.
- 38. Fontana L, Weiss EP, Villareal DT, et al. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell, 2008, 7(5): 681-687.
- 39. Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature, 2009, 462(7276): 1061-1064.
- 40. Fontana L, Meyer TE, Klein S, et al. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA, 2004, 101(17): 6659-6663.
- 41. Gowans GJ, Hardie DG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans, 2014, 42(1): 71-75.
- 42. Verges B, Cariou B. mTOR inhibitors and diabetes. Diabetes Res Clin Pract, 2015, 110(2): 101-108.
- 43. Massacesi C, Di Tomaso E, Urban PA, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther, 2016, 9(9): 203-210.
- 44. Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci, 2013, 126(8): 1713-1719.
- 45. Wang F, Chan CH, Chen K, et al. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene, 2012, 31(12): 1546-1557.
- 46. Shimokawa I, Komatsu T, Hayashi N, et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell, 2015, 14(4): 707-709.
- 47. Takeda-Watanabe A, Kitada M, Kanasaki K, et al. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun, 2012, 427(1): 191-196.
- 48. Shin, JY. Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells. Curr Eye Res, 2011, 36(12): 1116-1122.
- 49. Suzuki M, Endo M, Shinohara F, et al. Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells. Cancer Chemother Pharmacol, 2011, 67(5): 1129-1136.
- 50. Kofman AE, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY), 2012, 4(4): 279-289.
- 51. Das A, Durrant D, Koka S, et al. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem, 2014, 289(7): 4145-4160.
- 52. Cao K, Graziotto JJ, Blair CD, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med, 2011, 3(89): 89ra58.
- 53. Santos RX, Correia SC, Cardoso SA, et al. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer’s disease. J Neurochem, 2011, 117(6): 927-936.
- 54. Lee HJ, Jung H, Kwon J, et al. A germacranolide sesquiterpene lactone suppressed inducible nitric oxide synthase by downregulating NF-kappa B activity. Can J Physiol Pharmacol, 2011, 89(3): 232-237.
- 55. Chin YT, Hsieh MT, Yang SH, et al. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget, 2014, 5(24): 12891-12907.
- 56. Narayanan BA, Narayanan NK, Re GG, et al. Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer, 2003, 104(2): 204-212.
- 57. Xia N, Strand S, Schlufter F, et al. Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, 2013, 32(32): 29-35.
- 58. Jiang J, Mo ZC, Yin K, et al. Epigallocatechin-3-gallate prevents TNF-alpha-induced NF-kappa B activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells. Int J Mol Med, 2012, 29(5): 946-956.
- 59. Jung KJ, Kim JY, Zou Y, et al. Effect of short-term, low dose aspirin supplementation on the activation of pro-inflammatory NF-kappa B in aged rats. Mech Ageing Dev, 2006, 127(3): 223-230.
- 60. Xu W, Deng YY, Yang L, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res, 2015, 166(5): 451-458.
- 61. Ikeno Y, Hubbard GB, Lee S, et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci, 2009, 64(5): 522-529.
-
Previous Article
七氟烷吸入诱导麻醉的研究进展 -
Next Article
噪音对麻醉复苏室患者的影响及护理现状