- 1. Department of Rehabilitation, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P. R. China;
- 2. Graduate School of Xinjiang Medical University, Urumqi, Xinjiang 830054, P. R. China;
- 3. Department of Neurology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P. R. China;
People with Parkinson’s disease (PD) exhibit multi-system damaged. Medication mainly targets impairments related to dopaminergic lesions. Moreover, in later stages of the disease, medication becomes less effective. Rehabilitation therapy is believed that it can improve multiple functional disorders, including myotonia, bradykinesia, and postural gait abnormalities. It not only reduces the severity of non-motor symptoms and improves the quality of life in PD patients, but also delays the development of PD and improves the activity of daily life of patients. This article summarizes the progress of rehabilitation assessment and the therapy of PD.
Citation: XIE Rong, ZHU Huiyan, LI Ke, LI Hongyan. Assessment and therapy progress in Parkinson’s disease rehabilitation. West China Medical Journal, 2019, 34(5): 548-560. doi: 10.7507/1002-0179.201903250 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Suchowersky O, Reich S, Perlmutter J, et al. Practice parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review) report of the quality standards subcommittee of the American academy of neurology. Neurology, 2006, 66(7): 968-975. |
2. | Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord, 2014, 29(13): 1583-1590. |
3. | 刘疏影, 陈彪. 帕金森病流行现状. 中国现代神经疾病杂志, 2016, 16(2): 98-101. |
4. | 卞企梅, 李彬, 李震, 等. 康复治疗对帕金森病的疗效观察. 安徽医学, 2013, 34(8): 1171-1172. |
5. | 高强, 何成奇. 帕金森病患者运动功能评定与运动疗法的进展. 中国康复医学杂志, 2008, 23(5): 473-476. |
6. | Podsiadło D, Richardson S. The timed "Up and Go" test. Arch Phys Med Rehabil, 1989, 67: 387-389. |
7. | Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed "Up & Go" test in people with Parkinson disease. Phys Ther, 2001, 81(2): 810-818. |
8. | Siggeirsdóttir K, Jónsson BY, Jónsson HJ, et al. The timed ‘Up & Go’ is dependent on chair type. Clin Rehabil, 2002, 16(6): 609-616. |
9. | Opara J, Małecki A, Małecka E, et al. Motor assessment in Parkinson’s disease. Ann Agric Environ Med, 2017, 24(3): 411-415. |
10. | Horak FB, Wrisley DM, Frank J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther, 2009, 89(5): 484-498. |
11. | Franchignoni F, Horak F, Godi M, et al. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. J Rehabil Med, 2010, 42(4): 323-331. |
12. | Yingyongyudha A, Saengsirisuwan V, Panichaporn W, et al. The Mini-Balance Evaluation Systems Test (Mini-BESTest) demonstrates higher accuracy in identifying older adult participants with history of falls than do the BESTest, Berg Balance Scale, or Timed Up and Go Test. J Geriatr Phys Ther, 2016, 39(2): 64-70. |
13. | Elbers RG, van Wegen EE, Verhoef J, et al. Is gait speed a valid measure to predict community ambulation in patients with Parkinson’s disease?. J Rehab Med, 2013, 45(4): 370-375. |
14. | 杨雅琴, 周亚楠, 王拥军, 等. 功能性步态评价在帕金森病患者中的效度. 中国康复理论与实践, 2018, 24(11): 1329-1332. |
15. | Proud EL, Miller KJ, Bilney B, et al. Evaluation of measures of upper limb functioning and disability in people with Parkinson disease: a systematic review. Arch Phys Med Rehabil, 2015, 96(3): 540-551. |
16. | Metman LV, Myre B, Verwey N, et al. Test-retest reliability of UPDRS-III, dyskinesia scales, and timed motor tests in patients with advanced Parkinson’s disease: an argument against multiple baseline assessments. Mov Disord, 2004, 19(9): 1079-1084. |
17. | Suttrup I, Warnecke T. Dysphagia in Parkinson’s disease. Dysphagia, 2016, 31(1): 24-32. |
18. | Kim YH, Oh BM, Jung IY, et al. Spatiotemporal characteristics of swallowing in Parkinson’s disease. Laryngoscope, 2015, 125(2): 389-395. |
19. | Argolo N, Sampaio M, Pinho P, et al. Videofluoroscopic predictors of penetration-aspiration in Parkinson’s disease patients. Dysphagia, 2015, 30(6): 751-758. |
20. | Ellerston JK, Heller AC, Houtz DR, et al. Quantitative measures of swallowing deficits in patients with Parkinson’s disease. Ann Otol Rhinol Laryngol, 2016, 125(5): 385-392. |
21. | 丘卫红. 构音障碍的评价及语言治疗. 中国临床康复, 2004, 8(28): 6155-6157. |
22. | Folstein MF, Folstein SE, McHugh PR. A practical method for grading the cognitive state of patients for the clinician. Psychiatr Res, 1975, 12(3): 189-198. |
23. | Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Am Geriatr Soc, 2005, 53(4): 695-699. |
24. | Kalbe E, Calabrese P, Kohn N, et al. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat Disord, 2008, 14(2): 93-101. |
25. | 郭起浩, 陈瑞燕, 洪震, 等. 不同文化背景下正常老人认知功能比较. 中国心理卫生杂志, 2003, 17(11): 731-733. |
26. | Pagonabarraga J, Kulisevsky J, Llebaria G, et al. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord, 2008, 23(7): 998-1005. |
27. | 中华医学会神经病学分会神经心理学与行为神经病学组, 中华医学会神经病学分会帕金森病及运动障碍学组. 帕金森病抑郁、焦虑及精神病性障碍的诊断标准及治疗指南. 中华神经科杂志, 2013, 46: 56-60. |
28. | Falup-Pecurariu C, Diaconu Ş. Sleep dysfunction in Parkinson’s disease. Int Rev Neurobiol, 2017, 133: 720-742. |
29. | Santamaria J. Sleep and fatigue in Parkinson’s disease// Jankovic J, Tolosa E. Parkinson’s disease and movement disorders. 6 ed. Philadelphia: Lippincott Williams & Wilkins, 2015: 428-439. |
30. | Maglione JE, Liu LQ, Neikrug AB, et al. Actigraphy for the assessment of sleep measures in Parkinson’s disease. Sleep, 2013, 36(8): 1209-1217. |
31. | American Gastroenterological Association, Bharucha AE, Dorn SD, et al. American Gastroenterological Association medical position statement on constipation. Gastroenterology, 2013, 144(1): 211-217. |
32. | Chaudhuri KR, Rizos A, Trenkwalder C, et al. King’s Parkinson’s Disease Pain Scale, the first scale for pain in PD: an international validation. Mov Disord, 2015, 30(12): 1623-1631. |
33. | Wu CK, Hohler AD. Management of orthostatic hypotension in patients with Parkinson’s disease. Pract Neurol, 2015, 15(2): 100-104. |
34. | Kaufmann H, Goldstein DS. Autonomic dysfunction in Parkinson disease. Handb Clin Neurol, 2013, 117(4): 259. |
35. | 中华医学会神经病学分会神经康复学组, 中国微循环学会神经变性病专业委员会康复学组, 中国康复医学会帕金森病与运动障碍康复专业委员会. 帕金森病康复中国专家共识. 中国康复理论与实践, 2018, 24(7): 745-752. |
36. | Webster DD. Critical analysis of the disability in Parkinson’s disease. Mod Treat, 1968, 5(2): 257-282. |
37. | Hoehn M, Yahr M. Parkinsonism: onset, progression and mortality. Neurology, 1967, 17(5): 427-442. |
38. | Fahn S, Elton R, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale// Fahn S, Marsden CD, Calne DB, et al. Recent developments in Parkinson’s disease: Vol 2. Florham Park: McMellam Health Care Information, 1987: 153-163. |
39. | Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord, 2008, 23(15): 2129-2170. |
40. | Marinus J, Visser M, Stiggelbout AM, et al. A short scale for the assessment of motor impairments and disabilities in Parkinson’s disease: the SPES/SCOPA. Neurol Neurosurg Psychiatry, 2004, 75(3): 388-395. |
41. | Radder DL, Sturkenboom IH, van Nimwegen M, et al. Physical therapy and occupational therapy in Parkinson’s disease. Int J Neurosci, 2017, 127(10): 930-943. |
42. | Lauzé M, Daneault JF, Duval C. The effects of physical activity in Parkinson’s disease: a review. J Parkinsons Dis, 2016, 6(4): 685-698. |
43. | Saint-Hilaire M, Ellis T. A prescription for physical therapy and exercise in Parkinson’s disease. Adv Park Dis, 2013, 2(4): 118-120. |
44. | Stożek J, Rudzińska M, Pustułka-Piwnik U, et al. The effect of the rehabilitation program on balance, gait, physical performance and trunk rotation in Parkinson’s disease. Aging Clin Exp Res, 2016, 28(6): 1169-1177. |
45. | Kurtais Y, Kutlay S, Tur BS, et al. Does treadmill training improve lower-extremity tasks in Parkinson disease? A randomized controlled trial. Clin J Sport Med, 2008, 18(3): 289-291. |
46. | 于梅, 李连涛, 董同宝, 等. 强化核心肌力训练对帕金森病康复的效果. 广东医学, 2015, 36(1): 77-79. |
47. | 邢瑞仙, 李隆广, 刘学文. 康复机器人辅助步行训练对帕金森病患者下肢运动功能的影响. 中国现代医生, 2013, 51(24): 149-150, 153. |
48. | 刘燕平, 陈美云. Lokomat 下肢康复机器人对改善帕金森病患者步行能力的疗效研究. 中国康复, 2017, 32(1): 30-32. |
49. | Fisher BE, Wu AD, Salem GJ, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil, 2008, 89(7): 1221-1229. |
50. | Shen X, Wong-Yu IS, Mak MK. Effects of exercise on falls, balance, and gait ability in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair, 2016, 30(6): 512-527. |
51. | Flach A, Jaegers L, Krieger M, et al. Endurance exercise improves function in individuals with Parkinson’s disease: a meta-analysis. Neurosci Lett, 2017, 659(659): 115-119. |
52. | Lamotte G, Rafferty MR, Prodoehl JA, et al. Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: a review. Parkinsons Dis, 2015, 5(1): 21-41. |
53. | McRae C, Leventhal D, Westheimer O, et al. Long-term effects of DAnce for PD on selfefficacy among persons with Parkinson’s disease. Arts Health, 2017, 9(1): 1-12. |
54. | Edward P. Immersion of virtual reality for rehabilitation: review. Appl Ergon, 2018(69): 153-161. |
55. | 蒋瑞芹, 任祥友. 虚拟现实康复训练程序在早期帕金森病患者中的应用. 中国民康医学, 2013, 25(17): 85-86. |
56. | Pompeu JE, Arduini LA, Botelho AR, et al. Feasibility, safety and outcomes of playing Kinect Adventures!TM for people with Parkinson’s disease: a pilot study. Physiotherapy, 2014, 100(2): 162-168. |
57. | Palacios-Navarro G, Garcia-Magarino I, Ramos-Lorente P. A kinect-based system for lower limb rehabilitation in Parkinson’s disease patients: a pilot study. J Med Syst, 2015, 39(9): 103. |
58. | Melo G, Kleinerbe AFR, Lopesc J, et al. P100-Effects of virtual reality training on mobility in individuals with Parkinson’s disease. Gait Posture, 2018, 65(Suppl 1): 394-395. |
59. | Liao YY, Yang YR, Wu YR, et al. Virtual reality-based Wii fit training in improving muscle strength, sensory integration ability, and walking abilities in patients with Parkinson’s disease: a randomized control trial. Int J Gerontol, 2015, 9(4): 190-195. |
60. | Matar E, Shine JM, Naismith SL, et al. Using virtual reality to explore the role of conflict resolution and environmental salience in Freezing of Gait in Parkinson’s disease. Parkinsonism Relat Disord, 2013, 19(11): 937-942. |
61. | Matar E, Shine JM, Naismith SL, et al. Virtual reality walking and dopamine: opening new doorways to understanding freezing of gait in Parkinson’s disease. J Neurol Sci, 2014, 344(1/2): 182-185. |
62. | Yelshyna D, Gago MF, Bicho E, et al. Compensatory postural adjustments in Parkinson’s disease assessed via a virtual reality environment. Behav Brain Res, 2016, 296: 384-392. |
63. | Ellis T, Latham NK, DeAngelis TR, et al. Feasibility of a virtual exercise coach to promote walking in community dwelling persons with Parkinson disease. Am J Phys Med Rehabil, 2013, 92(6): 472-481. |
64. | Boroojerdia B, Ghaffarib R, Mahadevan N, et al. Clinical feasibility of a wearable, conformable, sensor patch to monitor motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord, 2017, 61: 70-76. |
65. | López-Blanco R, Velasco MA, Méndez-Guerrero A, et al. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci, 2019, 401: 37-42. |
66. | Corbianco S, Cavallini G, Baldereschi G, et al. Whole body vibration and treadmill training in Parkinson’s disease rehabilitation: effects on energy cost and recovery phases. Neurol Sci, 2018, 39(12): 2159-2168. |
67. | Kaut O, Brenig D, Marek M, et al. Postural stability in Parkinson’s disease patients is improved after stochastic resonance therapy. Parkinsons Dis, 2016, 2016: 7948721. |
68. | Edmonston D, Gruder O, Barr G, et al. Whole body vibration therapy with exercise enhances motor function and improves quality of life in Parkinson’s disease. Arch Phys Med Rehabil, 2016, 97(10): e74. |
69. | Aleksandra K, Wiktor N. Impact of the whole body vibration training on the motor symptoms in Parkinson disease patients. Parkinsonism Relat Disord, 2016(22): e66-e67. |
70. | Sharififar S, Coronado RA, Romero S, et al. The effects of whole body vibration on mobility and balance in Parkinson disease: a systematic review. Iran J Med Sci, 2014, 39(4): 318-326. |
71. | Dincher A, Schwarz M, Wydra G. Analysis of the effects of whole-body vibration in Parkinson’s disease: systematic review and meta-analysis. PMR, 2019. |
72. | Ayán C, Cancela JM. Effects of aquatic exercise on persons with Parkinson’s disease: a preliminary study. Sci Sports, 2012, 27(5): 300-304. |
73. | 王轶钊, 赵骅, 冯诗淳, 等. 水中运动训练对帕金森病患者运动功能、平衡功能和行走能力的康复作用. 中国现代神经疾病杂志, 2017, 17(5): 346-351. |
74. | 张露远. 神经肌肉电刺激治疗帕金森病合并不宁腿综合征疗效观察. 海南医学, 2017, 28(16): 2619-2621. |
75. | Shehata H, Tamawy M, Mohieldin N, et al. Can repetitive transcranial magnetic stimulation (RTMS) help on-freezers with advanced PD?. Neurol Sci, 2013, 333(Suppl 1): e139. |
76. | Chung CL, Mak M. Effect of repetitive transcranial magnetic stimulation on physical function and motor signs in Parkinson’s disease: a systematic review and meta-analysis. Brain Stimul, 2016, 9(4): 475-487. |
77. | 韩宇, 承欧梅, 谢鹏, 等. 重复经颅磁刺激治疗帕金森病患者运动功能障碍系统评价. 现代医药卫生, 2015, 31(11): 1609-1612. |
78. | Yokoe M, Mano T, Maruo T, et al. The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: a double-blind crossover pilot study. J Clin Neurosci, 2018, 47: 72-78. |
79. | Málly J, Geisz N, Dinya E. Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res Bull, 2017, 135: 98-104. |
80. | Málly J, Stone TW, Sinkó G, et al. Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson’s disease (PD). Strong age-dependency in the effect of NBS. Brain Res Bull, 2018, 142: 78-87. |
81. | Yotnuengnit P, Bhidayasiri R, Donkhan R, et al. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Phys Med Rehabil, 2018, 97(1): 7-15. |
82. | Manenti R, Brambilla M, Benussi A, et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov Disord, 2016, 31(5): 715-724. |
83. | Alonzo A, Fong J, Ball N, M, et al. Pilot trial of home-administered transcranial direct current stimulation for the treatment of depression. J Affect Disord, 2019, 252: 475-483. |
84. | Boggio PS, Campanhã C, Valasek CA, et al. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci, 2010, 31(3): 593-597. |
85. | Doruk D, Gray Z, Bravo GL, et al. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett, 2014, 582: 27-31. |
86. | Fregni F, Boggio PS, Santos MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord, 2006, 21(10): 1693-1702. |
87. | Manenti R, Brambilla M, Rosini S, et al. Time up and go task performance improves after transcranial direct current stimulation in patient affected by Parkinson’s disease. Neurosci Lett, 2014, 580(580): 74-77. |
88. | Pereira JB, Junqué C, Bartrés-Faz D, et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul, 2013, 6(1): 16-24. |
89. | Kojovic M, Kassavetis P, Bologna M, et al. Transcranial magnetic stimulation follow-up study in early Parkinson’s disease: a decline in compensation with disease progression?. Mov Disord, 2015, 30(8): 1098-1106. |
90. | Foster ER, Bedekar M, Tickle-Degnen L. Systematic review of the effectiveness of occupational therapy-related interventions for people with Parkinson’s disease. Am J Occup Ther, 2014, 68(1): 39-49. |
91. | Rochester L, Baker K, Hetherington V, et al. Evidence for motor learning in Parkinson’s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res, 2010, 1319: 103-111. |
92. | Rochester L, Hetherington V, Jones D, et al. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch Phys Med Rehabil, 2005, 86(5): 999-1006. |
93. | Domingos J, Keus SHJ, Dean J, et al. The European Physiotherapy guideline for Parkinson’s disease: implications for neurologists. J Parkinsons Dis, 2018, 8(4): 499-502. |
94. | Sturkenboom IH, Nijhuis-van der Sanden MW, Graff MJ. A process evaluation of a home-based occupational therapy intervention for Parkinson’s patients and their caregivers performed alongside a randomized controlled trial. Clin Rehabil, 2016, 30(12): 1186-1199. |
95. | Mak MK, Hui-Chan CW. Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson’s disease: a randomized controlled trial. Mov Disord, 2008, 23(4): 501-509. |
96. | de Bruin N, Doan JB, Turnbull G, et al. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Dis, 2010, 2010: 483530. |
97. | Almeida QJ, Bhatt H. A manipulation of visual feedback during gait training in Parkinson’s disease. Parkinsons Dis, 2012, 2012: 508720. |
98. | Kadivar Z, Corcos DM, Foto J, et al. Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil Neural Repair, 2011, 25(7): 626-635. |
99. | Nackaerts E, Nieuwboer A, Broeder SA, et al. Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson’s disease. Neurorehabil Neural Repair, 2016, 30(5): 431-439. |
100. | Ma HI, Trombly CA, Wagenaar RC, et al. Effect of one single auditor cue on movement kinematics in patients with Parkinson’s disease. Am J Phys Med Rehabil, 2004, 83(7): 530-536. |
101. | Maitra KK. Enhancement of reaching performance via self-speech in people with Parkinson’s disease. Clin Rehabil, 2007, 21(5): 418-424. |
102. | Ringenbach SD, van Gemmert AW, Shill HA, et al. Auditory instructional cues benefit unimanual and bimanual drawing in Parkinson’s disease patients. Hum Mov Sci, 2011, 30(4, SI): 770-782. |
103. | Sturkenboom IH, Graff MJ, Hendriks JC, et al. Efficacy of occupational therapy for patients with Parkinson’s disease: a randomised controlled trial. Lancet Neurol, 2014, 13(6): 557-566. |
104. | Sturkenboom IH, Graff MJ, Borm GF, et al. The impact of occupational therapy in Parkinson’s disease: a randomized controlled feasibility study. Clin Rehabil, 2013, 27(2): 99-112. |
105. | Mateos-Toset S, Cabrera-Martos I, Torres-Sanchez I, et al. Effects of a single hand-exercise session on manual dexterity and strength in persons with Parkinson disease: a randomized controlled trial. PM R, 2016, 8(2): 115-122. |
106. | 唐海玉, 徐明明, 余红. 励-协夫曼言语治疗对帕金森患者言语功能的影响. 护理学报, 2016, 23(17): 66-69. |
107. | Wight S, Miller N. Lee Silverman Voice Treatment for people with Parkinson’s: audit of outcomes in a routine clinic. Int J Lang Commun Disord, 2015, 50(2): 215-225. |
108. | Sackley CM, Smith CH, Rick CE, et al. Lee Silverman Voice Treatment versus standard speech and language therapy versus control in Parkinson’s disease: a pilot randomised controlled trial (PD COMM pilot). Pilot Feasibility Stud, 2018, 4: 30. |
109. | Luchesi KF, Kitamura S, Mourao LF. Dysphagia progression and swallowing management in Parkinson’s disease: an observational study. Braz J Otorhinolaryngol, 2015, 81(1): 24-30. |
110. | Troche MS, Okun MS, Rosenbek JC, et al. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial. Neurology, 2010, 75(21): 1912-1919. |
111. | 张路, 刘颖, 王含. 帕金森病康复进展. 中国现代神经疾病杂志, 2017, 17(5): 328-333. |
112. | Naismith SL, Mowszowski L, Diamond K, et al. Improving memory in Parkinson’s disease: a healthy brain ageing cognitive training program. Mov Disord, 2013, 28(8): 1097-1103. |
113. | Peña J, Ibarretxe-Bilbao N, Garcia-Gorostiaga IA, et al. Improving functional disability and cognition in Parkinson disease randomized controlled trial. Neurology, 2014, 83(23): 2167-2174. |
114. | Petrelli A, Kaesberg S, Barbe MT, et al. Cognitive training in Parkinson’s disease reduces cognitive decline in the long term. Eur J Neurol, 2015, 22(4): 640-647. |
115. | Petrelli A, Kaesberg S, Barbe MT, et al. Effects of cognitive training in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord, 2014, 20(11): 1196-1202. |
116. | dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease--effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy, 2012, 98(3): 217-223. |
117. | Leentjens AF, Dujardin K, Marsh L, et al. Anxiety rating scales in Parkinson’s disease: critique and recommendations. Mov Disord, 2008, 23(14): 2015-2025. |
118. | Dissanayaka NN, Sellbach A, Silburn PA, et al. Factors associated with depression in Parkinson’s disease. J Affect Disord, 2011, 132(1/2): 82-88. |
119. | Farabaugh A, Locascio JJ, Yap L, et al. Cognitive-behavioral therapy for patients with Parkinson’s disease and comorbid major depressive disorder. Psychosomatics, 2010, 1(2): 124-129. |
120. | Berardelli I, Bloise MC, Bologna MA, et al. Cognitive behavioral group therapy versus psychoeducational intervention in Parkinson’s disease. Neuropsychiatr Dis Treat, 2018, 14(14): 399-405. |
121. | Egan SJ, Laidlaw K, Starkstein S. Cognitive behaviour therapy for depression and anxiety in Parkinson’s disease. J Parkinsons Dis, 2015, 5(3): 443-451. |
122. | Rao SS, Valestin J, Brown C, et al. Long-Term efficacy of biofeedback therapy for dyssynergic defecation: randomized controlled trial. Am J Gastroenterol, 2010, 105(4): 890-896. |
123. | Chiu CM, Wang CP, Sung WH, et al. Functional magnetic stimulation in constipation associated with Parkinson’s disease. J Rehabil Med, 2009, 41(13): 1085-1089. |
124. | Albanese A, Brisinda G, Bentivoglio AR, et al. Treatment of outlet obstruction onstipation in Parkinson’s disease with botulinum neurotoxin A. Am J Gastroenterol, 2003, 98(6): 1439-1440. |
125. | Cadeddu F, Bentivoglio AR, Brandara F, et al. Outlet type constipation in Parkinson’s disease: results of botulinumtoxin treatment. Aliment Pharmacol Ther, 2005, 22(10): 997-1003. |
- 1. Suchowersky O, Reich S, Perlmutter J, et al. Practice parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review) report of the quality standards subcommittee of the American academy of neurology. Neurology, 2006, 66(7): 968-975.
- 2. Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord, 2014, 29(13): 1583-1590.
- 3. 刘疏影, 陈彪. 帕金森病流行现状. 中国现代神经疾病杂志, 2016, 16(2): 98-101.
- 4. 卞企梅, 李彬, 李震, 等. 康复治疗对帕金森病的疗效观察. 安徽医学, 2013, 34(8): 1171-1172.
- 5. 高强, 何成奇. 帕金森病患者运动功能评定与运动疗法的进展. 中国康复医学杂志, 2008, 23(5): 473-476.
- 6. Podsiadło D, Richardson S. The timed "Up and Go" test. Arch Phys Med Rehabil, 1989, 67: 387-389.
- 7. Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed "Up & Go" test in people with Parkinson disease. Phys Ther, 2001, 81(2): 810-818.
- 8. Siggeirsdóttir K, Jónsson BY, Jónsson HJ, et al. The timed ‘Up & Go’ is dependent on chair type. Clin Rehabil, 2002, 16(6): 609-616.
- 9. Opara J, Małecki A, Małecka E, et al. Motor assessment in Parkinson’s disease. Ann Agric Environ Med, 2017, 24(3): 411-415.
- 10. Horak FB, Wrisley DM, Frank J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther, 2009, 89(5): 484-498.
- 11. Franchignoni F, Horak F, Godi M, et al. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. J Rehabil Med, 2010, 42(4): 323-331.
- 12. Yingyongyudha A, Saengsirisuwan V, Panichaporn W, et al. The Mini-Balance Evaluation Systems Test (Mini-BESTest) demonstrates higher accuracy in identifying older adult participants with history of falls than do the BESTest, Berg Balance Scale, or Timed Up and Go Test. J Geriatr Phys Ther, 2016, 39(2): 64-70.
- 13. Elbers RG, van Wegen EE, Verhoef J, et al. Is gait speed a valid measure to predict community ambulation in patients with Parkinson’s disease?. J Rehab Med, 2013, 45(4): 370-375.
- 14. 杨雅琴, 周亚楠, 王拥军, 等. 功能性步态评价在帕金森病患者中的效度. 中国康复理论与实践, 2018, 24(11): 1329-1332.
- 15. Proud EL, Miller KJ, Bilney B, et al. Evaluation of measures of upper limb functioning and disability in people with Parkinson disease: a systematic review. Arch Phys Med Rehabil, 2015, 96(3): 540-551.
- 16. Metman LV, Myre B, Verwey N, et al. Test-retest reliability of UPDRS-III, dyskinesia scales, and timed motor tests in patients with advanced Parkinson’s disease: an argument against multiple baseline assessments. Mov Disord, 2004, 19(9): 1079-1084.
- 17. Suttrup I, Warnecke T. Dysphagia in Parkinson’s disease. Dysphagia, 2016, 31(1): 24-32.
- 18. Kim YH, Oh BM, Jung IY, et al. Spatiotemporal characteristics of swallowing in Parkinson’s disease. Laryngoscope, 2015, 125(2): 389-395.
- 19. Argolo N, Sampaio M, Pinho P, et al. Videofluoroscopic predictors of penetration-aspiration in Parkinson’s disease patients. Dysphagia, 2015, 30(6): 751-758.
- 20. Ellerston JK, Heller AC, Houtz DR, et al. Quantitative measures of swallowing deficits in patients with Parkinson’s disease. Ann Otol Rhinol Laryngol, 2016, 125(5): 385-392.
- 21. 丘卫红. 构音障碍的评价及语言治疗. 中国临床康复, 2004, 8(28): 6155-6157.
- 22. Folstein MF, Folstein SE, McHugh PR. A practical method for grading the cognitive state of patients for the clinician. Psychiatr Res, 1975, 12(3): 189-198.
- 23. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Am Geriatr Soc, 2005, 53(4): 695-699.
- 24. Kalbe E, Calabrese P, Kohn N, et al. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat Disord, 2008, 14(2): 93-101.
- 25. 郭起浩, 陈瑞燕, 洪震, 等. 不同文化背景下正常老人认知功能比较. 中国心理卫生杂志, 2003, 17(11): 731-733.
- 26. Pagonabarraga J, Kulisevsky J, Llebaria G, et al. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord, 2008, 23(7): 998-1005.
- 27. 中华医学会神经病学分会神经心理学与行为神经病学组, 中华医学会神经病学分会帕金森病及运动障碍学组. 帕金森病抑郁、焦虑及精神病性障碍的诊断标准及治疗指南. 中华神经科杂志, 2013, 46: 56-60.
- 28. Falup-Pecurariu C, Diaconu Ş. Sleep dysfunction in Parkinson’s disease. Int Rev Neurobiol, 2017, 133: 720-742.
- 29. Santamaria J. Sleep and fatigue in Parkinson’s disease// Jankovic J, Tolosa E. Parkinson’s disease and movement disorders. 6 ed. Philadelphia: Lippincott Williams & Wilkins, 2015: 428-439.
- 30. Maglione JE, Liu LQ, Neikrug AB, et al. Actigraphy for the assessment of sleep measures in Parkinson’s disease. Sleep, 2013, 36(8): 1209-1217.
- 31. American Gastroenterological Association, Bharucha AE, Dorn SD, et al. American Gastroenterological Association medical position statement on constipation. Gastroenterology, 2013, 144(1): 211-217.
- 32. Chaudhuri KR, Rizos A, Trenkwalder C, et al. King’s Parkinson’s Disease Pain Scale, the first scale for pain in PD: an international validation. Mov Disord, 2015, 30(12): 1623-1631.
- 33. Wu CK, Hohler AD. Management of orthostatic hypotension in patients with Parkinson’s disease. Pract Neurol, 2015, 15(2): 100-104.
- 34. Kaufmann H, Goldstein DS. Autonomic dysfunction in Parkinson disease. Handb Clin Neurol, 2013, 117(4): 259.
- 35. 中华医学会神经病学分会神经康复学组, 中国微循环学会神经变性病专业委员会康复学组, 中国康复医学会帕金森病与运动障碍康复专业委员会. 帕金森病康复中国专家共识. 中国康复理论与实践, 2018, 24(7): 745-752.
- 36. Webster DD. Critical analysis of the disability in Parkinson’s disease. Mod Treat, 1968, 5(2): 257-282.
- 37. Hoehn M, Yahr M. Parkinsonism: onset, progression and mortality. Neurology, 1967, 17(5): 427-442.
- 38. Fahn S, Elton R, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale// Fahn S, Marsden CD, Calne DB, et al. Recent developments in Parkinson’s disease: Vol 2. Florham Park: McMellam Health Care Information, 1987: 153-163.
- 39. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord, 2008, 23(15): 2129-2170.
- 40. Marinus J, Visser M, Stiggelbout AM, et al. A short scale for the assessment of motor impairments and disabilities in Parkinson’s disease: the SPES/SCOPA. Neurol Neurosurg Psychiatry, 2004, 75(3): 388-395.
- 41. Radder DL, Sturkenboom IH, van Nimwegen M, et al. Physical therapy and occupational therapy in Parkinson’s disease. Int J Neurosci, 2017, 127(10): 930-943.
- 42. Lauzé M, Daneault JF, Duval C. The effects of physical activity in Parkinson’s disease: a review. J Parkinsons Dis, 2016, 6(4): 685-698.
- 43. Saint-Hilaire M, Ellis T. A prescription for physical therapy and exercise in Parkinson’s disease. Adv Park Dis, 2013, 2(4): 118-120.
- 44. Stożek J, Rudzińska M, Pustułka-Piwnik U, et al. The effect of the rehabilitation program on balance, gait, physical performance and trunk rotation in Parkinson’s disease. Aging Clin Exp Res, 2016, 28(6): 1169-1177.
- 45. Kurtais Y, Kutlay S, Tur BS, et al. Does treadmill training improve lower-extremity tasks in Parkinson disease? A randomized controlled trial. Clin J Sport Med, 2008, 18(3): 289-291.
- 46. 于梅, 李连涛, 董同宝, 等. 强化核心肌力训练对帕金森病康复的效果. 广东医学, 2015, 36(1): 77-79.
- 47. 邢瑞仙, 李隆广, 刘学文. 康复机器人辅助步行训练对帕金森病患者下肢运动功能的影响. 中国现代医生, 2013, 51(24): 149-150, 153.
- 48. 刘燕平, 陈美云. Lokomat 下肢康复机器人对改善帕金森病患者步行能力的疗效研究. 中国康复, 2017, 32(1): 30-32.
- 49. Fisher BE, Wu AD, Salem GJ, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil, 2008, 89(7): 1221-1229.
- 50. Shen X, Wong-Yu IS, Mak MK. Effects of exercise on falls, balance, and gait ability in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair, 2016, 30(6): 512-527.
- 51. Flach A, Jaegers L, Krieger M, et al. Endurance exercise improves function in individuals with Parkinson’s disease: a meta-analysis. Neurosci Lett, 2017, 659(659): 115-119.
- 52. Lamotte G, Rafferty MR, Prodoehl JA, et al. Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: a review. Parkinsons Dis, 2015, 5(1): 21-41.
- 53. McRae C, Leventhal D, Westheimer O, et al. Long-term effects of DAnce for PD on selfefficacy among persons with Parkinson’s disease. Arts Health, 2017, 9(1): 1-12.
- 54. Edward P. Immersion of virtual reality for rehabilitation: review. Appl Ergon, 2018(69): 153-161.
- 55. 蒋瑞芹, 任祥友. 虚拟现实康复训练程序在早期帕金森病患者中的应用. 中国民康医学, 2013, 25(17): 85-86.
- 56. Pompeu JE, Arduini LA, Botelho AR, et al. Feasibility, safety and outcomes of playing Kinect Adventures!TM for people with Parkinson’s disease: a pilot study. Physiotherapy, 2014, 100(2): 162-168.
- 57. Palacios-Navarro G, Garcia-Magarino I, Ramos-Lorente P. A kinect-based system for lower limb rehabilitation in Parkinson’s disease patients: a pilot study. J Med Syst, 2015, 39(9): 103.
- 58. Melo G, Kleinerbe AFR, Lopesc J, et al. P100-Effects of virtual reality training on mobility in individuals with Parkinson’s disease. Gait Posture, 2018, 65(Suppl 1): 394-395.
- 59. Liao YY, Yang YR, Wu YR, et al. Virtual reality-based Wii fit training in improving muscle strength, sensory integration ability, and walking abilities in patients with Parkinson’s disease: a randomized control trial. Int J Gerontol, 2015, 9(4): 190-195.
- 60. Matar E, Shine JM, Naismith SL, et al. Using virtual reality to explore the role of conflict resolution and environmental salience in Freezing of Gait in Parkinson’s disease. Parkinsonism Relat Disord, 2013, 19(11): 937-942.
- 61. Matar E, Shine JM, Naismith SL, et al. Virtual reality walking and dopamine: opening new doorways to understanding freezing of gait in Parkinson’s disease. J Neurol Sci, 2014, 344(1/2): 182-185.
- 62. Yelshyna D, Gago MF, Bicho E, et al. Compensatory postural adjustments in Parkinson’s disease assessed via a virtual reality environment. Behav Brain Res, 2016, 296: 384-392.
- 63. Ellis T, Latham NK, DeAngelis TR, et al. Feasibility of a virtual exercise coach to promote walking in community dwelling persons with Parkinson disease. Am J Phys Med Rehabil, 2013, 92(6): 472-481.
- 64. Boroojerdia B, Ghaffarib R, Mahadevan N, et al. Clinical feasibility of a wearable, conformable, sensor patch to monitor motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord, 2017, 61: 70-76.
- 65. López-Blanco R, Velasco MA, Méndez-Guerrero A, et al. Smartwatch for the analysis of rest tremor in patients with Parkinson’s disease. J Neurol Sci, 2019, 401: 37-42.
- 66. Corbianco S, Cavallini G, Baldereschi G, et al. Whole body vibration and treadmill training in Parkinson’s disease rehabilitation: effects on energy cost and recovery phases. Neurol Sci, 2018, 39(12): 2159-2168.
- 67. Kaut O, Brenig D, Marek M, et al. Postural stability in Parkinson’s disease patients is improved after stochastic resonance therapy. Parkinsons Dis, 2016, 2016: 7948721.
- 68. Edmonston D, Gruder O, Barr G, et al. Whole body vibration therapy with exercise enhances motor function and improves quality of life in Parkinson’s disease. Arch Phys Med Rehabil, 2016, 97(10): e74.
- 69. Aleksandra K, Wiktor N. Impact of the whole body vibration training on the motor symptoms in Parkinson disease patients. Parkinsonism Relat Disord, 2016(22): e66-e67.
- 70. Sharififar S, Coronado RA, Romero S, et al. The effects of whole body vibration on mobility and balance in Parkinson disease: a systematic review. Iran J Med Sci, 2014, 39(4): 318-326.
- 71. Dincher A, Schwarz M, Wydra G. Analysis of the effects of whole-body vibration in Parkinson’s disease: systematic review and meta-analysis. PMR, 2019.
- 72. Ayán C, Cancela JM. Effects of aquatic exercise on persons with Parkinson’s disease: a preliminary study. Sci Sports, 2012, 27(5): 300-304.
- 73. 王轶钊, 赵骅, 冯诗淳, 等. 水中运动训练对帕金森病患者运动功能、平衡功能和行走能力的康复作用. 中国现代神经疾病杂志, 2017, 17(5): 346-351.
- 74. 张露远. 神经肌肉电刺激治疗帕金森病合并不宁腿综合征疗效观察. 海南医学, 2017, 28(16): 2619-2621.
- 75. Shehata H, Tamawy M, Mohieldin N, et al. Can repetitive transcranial magnetic stimulation (RTMS) help on-freezers with advanced PD?. Neurol Sci, 2013, 333(Suppl 1): e139.
- 76. Chung CL, Mak M. Effect of repetitive transcranial magnetic stimulation on physical function and motor signs in Parkinson’s disease: a systematic review and meta-analysis. Brain Stimul, 2016, 9(4): 475-487.
- 77. 韩宇, 承欧梅, 谢鹏, 等. 重复经颅磁刺激治疗帕金森病患者运动功能障碍系统评价. 现代医药卫生, 2015, 31(11): 1609-1612.
- 78. Yokoe M, Mano T, Maruo T, et al. The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: a double-blind crossover pilot study. J Clin Neurosci, 2018, 47: 72-78.
- 79. Málly J, Geisz N, Dinya E. Follow up study: the influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res Bull, 2017, 135: 98-104.
- 80. Málly J, Stone TW, Sinkó G, et al. Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson’s disease (PD). Strong age-dependency in the effect of NBS. Brain Res Bull, 2018, 142: 78-87.
- 81. Yotnuengnit P, Bhidayasiri R, Donkhan R, et al. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Phys Med Rehabil, 2018, 97(1): 7-15.
- 82. Manenti R, Brambilla M, Benussi A, et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov Disord, 2016, 31(5): 715-724.
- 83. Alonzo A, Fong J, Ball N, M, et al. Pilot trial of home-administered transcranial direct current stimulation for the treatment of depression. J Affect Disord, 2019, 252: 475-483.
- 84. Boggio PS, Campanhã C, Valasek CA, et al. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci, 2010, 31(3): 593-597.
- 85. Doruk D, Gray Z, Bravo GL, et al. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett, 2014, 582: 27-31.
- 86. Fregni F, Boggio PS, Santos MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord, 2006, 21(10): 1693-1702.
- 87. Manenti R, Brambilla M, Rosini S, et al. Time up and go task performance improves after transcranial direct current stimulation in patient affected by Parkinson’s disease. Neurosci Lett, 2014, 580(580): 74-77.
- 88. Pereira JB, Junqué C, Bartrés-Faz D, et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul, 2013, 6(1): 16-24.
- 89. Kojovic M, Kassavetis P, Bologna M, et al. Transcranial magnetic stimulation follow-up study in early Parkinson’s disease: a decline in compensation with disease progression?. Mov Disord, 2015, 30(8): 1098-1106.
- 90. Foster ER, Bedekar M, Tickle-Degnen L. Systematic review of the effectiveness of occupational therapy-related interventions for people with Parkinson’s disease. Am J Occup Ther, 2014, 68(1): 39-49.
- 91. Rochester L, Baker K, Hetherington V, et al. Evidence for motor learning in Parkinson’s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res, 2010, 1319: 103-111.
- 92. Rochester L, Hetherington V, Jones D, et al. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch Phys Med Rehabil, 2005, 86(5): 999-1006.
- 93. Domingos J, Keus SHJ, Dean J, et al. The European Physiotherapy guideline for Parkinson’s disease: implications for neurologists. J Parkinsons Dis, 2018, 8(4): 499-502.
- 94. Sturkenboom IH, Nijhuis-van der Sanden MW, Graff MJ. A process evaluation of a home-based occupational therapy intervention for Parkinson’s patients and their caregivers performed alongside a randomized controlled trial. Clin Rehabil, 2016, 30(12): 1186-1199.
- 95. Mak MK, Hui-Chan CW. Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson’s disease: a randomized controlled trial. Mov Disord, 2008, 23(4): 501-509.
- 96. de Bruin N, Doan JB, Turnbull G, et al. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Dis, 2010, 2010: 483530.
- 97. Almeida QJ, Bhatt H. A manipulation of visual feedback during gait training in Parkinson’s disease. Parkinsons Dis, 2012, 2012: 508720.
- 98. Kadivar Z, Corcos DM, Foto J, et al. Effect of step training and rhythmic auditory stimulation on functional performance in Parkinson patients. Neurorehabil Neural Repair, 2011, 25(7): 626-635.
- 99. Nackaerts E, Nieuwboer A, Broeder SA, et al. Opposite effects of visual cueing during writing-like movements of different amplitudes in Parkinson’s disease. Neurorehabil Neural Repair, 2016, 30(5): 431-439.
- 100. Ma HI, Trombly CA, Wagenaar RC, et al. Effect of one single auditor cue on movement kinematics in patients with Parkinson’s disease. Am J Phys Med Rehabil, 2004, 83(7): 530-536.
- 101. Maitra KK. Enhancement of reaching performance via self-speech in people with Parkinson’s disease. Clin Rehabil, 2007, 21(5): 418-424.
- 102. Ringenbach SD, van Gemmert AW, Shill HA, et al. Auditory instructional cues benefit unimanual and bimanual drawing in Parkinson’s disease patients. Hum Mov Sci, 2011, 30(4, SI): 770-782.
- 103. Sturkenboom IH, Graff MJ, Hendriks JC, et al. Efficacy of occupational therapy for patients with Parkinson’s disease: a randomised controlled trial. Lancet Neurol, 2014, 13(6): 557-566.
- 104. Sturkenboom IH, Graff MJ, Borm GF, et al. The impact of occupational therapy in Parkinson’s disease: a randomized controlled feasibility study. Clin Rehabil, 2013, 27(2): 99-112.
- 105. Mateos-Toset S, Cabrera-Martos I, Torres-Sanchez I, et al. Effects of a single hand-exercise session on manual dexterity and strength in persons with Parkinson disease: a randomized controlled trial. PM R, 2016, 8(2): 115-122.
- 106. 唐海玉, 徐明明, 余红. 励-协夫曼言语治疗对帕金森患者言语功能的影响. 护理学报, 2016, 23(17): 66-69.
- 107. Wight S, Miller N. Lee Silverman Voice Treatment for people with Parkinson’s: audit of outcomes in a routine clinic. Int J Lang Commun Disord, 2015, 50(2): 215-225.
- 108. Sackley CM, Smith CH, Rick CE, et al. Lee Silverman Voice Treatment versus standard speech and language therapy versus control in Parkinson’s disease: a pilot randomised controlled trial (PD COMM pilot). Pilot Feasibility Stud, 2018, 4: 30.
- 109. Luchesi KF, Kitamura S, Mourao LF. Dysphagia progression and swallowing management in Parkinson’s disease: an observational study. Braz J Otorhinolaryngol, 2015, 81(1): 24-30.
- 110. Troche MS, Okun MS, Rosenbek JC, et al. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial. Neurology, 2010, 75(21): 1912-1919.
- 111. 张路, 刘颖, 王含. 帕金森病康复进展. 中国现代神经疾病杂志, 2017, 17(5): 328-333.
- 112. Naismith SL, Mowszowski L, Diamond K, et al. Improving memory in Parkinson’s disease: a healthy brain ageing cognitive training program. Mov Disord, 2013, 28(8): 1097-1103.
- 113. Peña J, Ibarretxe-Bilbao N, Garcia-Gorostiaga IA, et al. Improving functional disability and cognition in Parkinson disease randomized controlled trial. Neurology, 2014, 83(23): 2167-2174.
- 114. Petrelli A, Kaesberg S, Barbe MT, et al. Cognitive training in Parkinson’s disease reduces cognitive decline in the long term. Eur J Neurol, 2015, 22(4): 640-647.
- 115. Petrelli A, Kaesberg S, Barbe MT, et al. Effects of cognitive training in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord, 2014, 20(11): 1196-1202.
- 116. dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease--effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy, 2012, 98(3): 217-223.
- 117. Leentjens AF, Dujardin K, Marsh L, et al. Anxiety rating scales in Parkinson’s disease: critique and recommendations. Mov Disord, 2008, 23(14): 2015-2025.
- 118. Dissanayaka NN, Sellbach A, Silburn PA, et al. Factors associated with depression in Parkinson’s disease. J Affect Disord, 2011, 132(1/2): 82-88.
- 119. Farabaugh A, Locascio JJ, Yap L, et al. Cognitive-behavioral therapy for patients with Parkinson’s disease and comorbid major depressive disorder. Psychosomatics, 2010, 1(2): 124-129.
- 120. Berardelli I, Bloise MC, Bologna MA, et al. Cognitive behavioral group therapy versus psychoeducational intervention in Parkinson’s disease. Neuropsychiatr Dis Treat, 2018, 14(14): 399-405.
- 121. Egan SJ, Laidlaw K, Starkstein S. Cognitive behaviour therapy for depression and anxiety in Parkinson’s disease. J Parkinsons Dis, 2015, 5(3): 443-451.
- 122. Rao SS, Valestin J, Brown C, et al. Long-Term efficacy of biofeedback therapy for dyssynergic defecation: randomized controlled trial. Am J Gastroenterol, 2010, 105(4): 890-896.
- 123. Chiu CM, Wang CP, Sung WH, et al. Functional magnetic stimulation in constipation associated with Parkinson’s disease. J Rehabil Med, 2009, 41(13): 1085-1089.
- 124. Albanese A, Brisinda G, Bentivoglio AR, et al. Treatment of outlet obstruction onstipation in Parkinson’s disease with botulinum neurotoxin A. Am J Gastroenterol, 2003, 98(6): 1439-1440.
- 125. Cadeddu F, Bentivoglio AR, Brandara F, et al. Outlet type constipation in Parkinson’s disease: results of botulinumtoxin treatment. Aliment Pharmacol Ther, 2005, 22(10): 997-1003.