- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
Systemic therapy is the main treatment for advanced non-small cell lung cancer, but the effect of chemotherapy alone is not good. In recent years, with the discovery of the pathogenic targets of non-small cell lung cancer, new treatment methods such as targeted drugs and immune checkpoint inhibitors are available, which greatly improve the survival time and quality of life of patients with advanced non-small cell lung cancer. Genetic testing is recommended for all patients with advanced non-small cells lung cancer to obtain more precise and individualized treatment. This article focuses on different types of gene mutations and the corresponding molecular targeted drugs in advanced non-small cell lung cancer, in order to better guide clinical treatment.
Citation: ZENG Lei, YANG Kaixuan. Progress in the targeted therapy for advanced non-small cell lung cancer. West China Medical Journal, 2021, 36(1): 102-109. doi: 10.7507/1002-0179.201910086 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Siegel RL, Miller KD, Jemal A, et al. Cancer statistics. CA Cancer J Clin, 2018, 68(1): 7-30. |
2. | Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol, 2013, 8(7): 823-859. |
3. | Kawaguchi T, Koh Y, Ando M, et al. Prospective analysis of oncogenic driver mutations and environmental factors: Japan molecular epidemiology for lung cancer study. J Clin Oncol, 2016, 34(19): 2247-2257. |
4. | Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol, 2014, 9(2): 154-162. |
5. | Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009, 361(10): 947-957. |
6. | Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 2010, 362(25): 2380-2388. |
7. | Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol, 2010, 11(2): 121-128. |
8. | Inoue A, Kobayashi K, Maemondo M, et al. Updated overall survival results from a randomized phase Ⅲ trial comparing gefitinib with carboplatin-paclitaxel for chemo- naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol, 2013, 24(1): 54-59. |
9. | Oizumi S, Kobayashi K, Inoue A, et al. Quality of life with gefitinib in patients with EGFR-mutated non-small cell lung cancer: quality of life analysis of North East Japan study group 002 trial. Oncologist, 2012, 17(6): 863-870. |
10. | Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (optimal, ctong-0802):a multicentre, open-label, randomised, phase 3 study. Lancet Oncol, 2011, 12(8): 735-742. |
11. | Zhou C, Wu YL, Chen G, et al. Final overall survival results froma randomised, phase Ⅲstudy of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol, 2015, 26(9): 1877-1883. |
12. | Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012, 13(3): 239-246. |
13. | Urata Y, Katakami N, Morita S, et al. Randomized phase Ⅲ study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108l. J Clin Oncol, 2016, 34(27): 3248-3257. |
14. | Yang JJ, Zhou Q, Yan HH, et al. A phase Ⅲ randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer, 2017, 116(5): 568-574. |
15. | Sequist LV, Yang JC, Yamamoto N, et al. Phase Ⅲ study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J clin Oncol, 2013, 31(27): 3327-3334. |
16. | Yang JC, Hirsh V, Schuler M, et al. Symptom control and quality of life in LUX-lung 3: a phase Ⅲ study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013, 31(27): 3342-3350. |
17. | Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol, 2014, 15(2): 213-222. |
18. | Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol, 2015, 16(2): 141-151. |
19. | Park K, Tan EH, O'Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol, 2016, 17(5): 577-589. |
20. | Paz-Ares L, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase Ⅱb LUX-lung 7 trial. Ann oncol, 2017, 28(2): 270-277. |
21. | Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med, 2015, 372(18): 1689-1699. |
22. | Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med, 2018, 378(2): 113-125. |
23. | Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer, 2010, 10(11): 760-774. |
24. | Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol, 2014, 15(11): 1236-1244. |
25. | Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol, 2019, 20(5): 625-635. |
26. | Noronha V, Patil VM, Joshi A, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol, 2019: Jco1901154. |
27. | Wu YL, Zhou C, Liam CK, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase Ⅲ, randomized, open-label, ensure study. Ann Oncol, 2015, 26(9): 1883-1889. |
28. | Lee CK, Brown C, Gralla RJ, et al. Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst, 2013, 105(9): 595-605. |
29. | Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol, 2017, 18(11): 1454-1466. |
30. | Mok TS, Cheng Y, Zhou X, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol, 2018, 36(22): 2244-2250. |
31. | Pikor LA, Ramnarine VR, Lam S, et al. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung cancer, 2013, 82(2): 179-189. |
32. | Boland JM, Erdogan S, Vasmatzis G, et al. Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum Pathol, 2009, 40(8): 1152-1158. |
33. | Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol, 2008, 3(1): 13-17. |
34. | Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol, 2009, 27(26): 4247-4253. |
35. | Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med, 2014, 371(23): 2167-2177. |
36. | Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med, 2013, 368(25): 2385-2394. |
37. | Solomon BJ, Kim DW, Wu YL, et al. Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol, 2018, 36(22): 2251-2258. |
38. | Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet, 2017, 390(10089): 29-39. |
39. | Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med, 2017, 377(9): 829-838. |
40. | Camidge DR, Dziadziuszko R, Peters S, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase Ⅲ alex study. J Thorac Oncol, 2019, 14(7): 1233-1243. |
41. | Zhou C, Lu Y, Kim S, et al. Primary results of alesia: a randomised, phase Ⅲ, open-label study of alectinib vs crizotinib in Asian patients with treatment-naïve ALK+ advanced NSCLC. Ann Oncol, 2018, 29(Suppl 9): ix173-ix178. |
42. | Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet, 2017, 389(10072): 917-929. |
43. | Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med, 2018, 379(21): 2027-2039. |
44. | Bergethon K, Shaw AT, Ou SH, et al. Ros1 rearrangements definea unique molecular class of lung cancers. J Clin Oncol, 2012, 30(8): 863-870. |
45. | Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med, 2014, 371(21): 1963-1971. |
46. | Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol, 2019, 30(7): 1121-1126. |
47. | Wu YL, Yang JC, Kim DW, et al. Phase Ⅱ study of crizotinib in east asian patients with ROS1-positive advanced non-small-cell lung cancer. J Clin Oncol, 2018, 36(14): 1405-1411. |
48. | Patil T, Smith DE, Bunn PA, et al. The incidence of brain metastases in stage ⅣROS1-rearranged non-small cell lung cancer and rate of central nervous system progression on crizotinib. J Thorac Oncol, 2018, 13(11): 1717-1726. |
49. | Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phaseⅠtrials (ALKA-372-001 and STARTRK-1). Cancer discov, 2017, 7(4): 400-409. |
50. | Lim SM, Kim HR, Lee JS, et al. Open-label, multicenter, phaseⅡ study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol, 2017, 35(23): 2613-2618. |
51. | Drilon A, Somwar R, Wagner JP, et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy ina patient with ROS1-rearranged lung cancer. Clin Cancer Res, 2016, 22(10): 2351-2358. |
52. | Sequist LV, Heist RS, Shaw AT, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol, 2011, 22(12): 2616-2624. |
53. | Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol, 2011, 29(15): 2046-2051. |
54. | Litvak AM, Paik PK, Woo KM, et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol, 2014, 9(11): 1669-1674. |
55. | Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF v600 mutations. N Engl J Med, 2015, 373(8): 726-736. |
56. | Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol, 2016, 17(5): 642-650. |
57. | Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFv600e-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol, 2017, 18(10): 1307-1316. |
58. | Hong DS, Bauer TM, Lee JJ, et al. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study. Ann Oncol, 2019, 30(2): 325-331. |
59. | Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med, 2018, 378(8): 731-739. |
60. | Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol, 2019, 21(2): 271-282. |
61. | Pillai RN, Behera M, Berry LD, et al. HER2 mutations in lung adenocarcinomas: a report from the lung cancer mutation consortium. Cancer, 2017, 123(21): 4099-4105. |
62. | Mazières J, Peters S, Lepage B, et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol, 2013, 31(16): 1997-2003. |
63. | De Grève J, Teugels E, Geers C, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung cancer, 2012, 76(1): 123-127. |
64. | Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med, 2011, 3(75): 75ra26. |
65. | Bean J, Brennan C, Shih JY, et al. Met amplification occurs with or without T790m mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA, 2007, 104(52): 20932-20937. |
66. | Kubo T, Yamamoto H, Lockwood WW, et al. Met gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer, 2009, 124(8): 1778-1784. |
67. | Paik PK, Drilon A, Fan PD, et al. Response to MET inhibitors in patients with stage Ⅳ lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer discov, 2015, 5(8): 842-849. |
68. | Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer discov, 2015, 5(8): 850-859. |
69. | Takeuchi K, Soda M, Togashi Y, et al. Ret, ROS1 and ALK fusions in lung cancer. Nat Med, 2012, 18(3): 378-381. |
70. | Wang R, Hu H, Pan Y, et al. Ret fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol, 2012, 30(35): 4352-4359. |
71. | Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol, 2016, 17(12): 1653-1660. |
72. | Gautschi O, Zander T, Keller FA, et al. A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol, 2013, 8(5): e43-e44. |
- 1. Siegel RL, Miller KD, Jemal A, et al. Cancer statistics. CA Cancer J Clin, 2018, 68(1): 7-30.
- 2. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol, 2013, 8(7): 823-859.
- 3. Kawaguchi T, Koh Y, Ando M, et al. Prospective analysis of oncogenic driver mutations and environmental factors: Japan molecular epidemiology for lung cancer study. J Clin Oncol, 2016, 34(19): 2247-2257.
- 4. Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol, 2014, 9(2): 154-162.
- 5. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009, 361(10): 947-957.
- 6. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 2010, 362(25): 2380-2388.
- 7. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol, 2010, 11(2): 121-128.
- 8. Inoue A, Kobayashi K, Maemondo M, et al. Updated overall survival results from a randomized phase Ⅲ trial comparing gefitinib with carboplatin-paclitaxel for chemo- naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol, 2013, 24(1): 54-59.
- 9. Oizumi S, Kobayashi K, Inoue A, et al. Quality of life with gefitinib in patients with EGFR-mutated non-small cell lung cancer: quality of life analysis of North East Japan study group 002 trial. Oncologist, 2012, 17(6): 863-870.
- 10. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (optimal, ctong-0802):a multicentre, open-label, randomised, phase 3 study. Lancet Oncol, 2011, 12(8): 735-742.
- 11. Zhou C, Wu YL, Chen G, et al. Final overall survival results froma randomised, phase Ⅲstudy of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol, 2015, 26(9): 1877-1883.
- 12. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012, 13(3): 239-246.
- 13. Urata Y, Katakami N, Morita S, et al. Randomized phase Ⅲ study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108l. J Clin Oncol, 2016, 34(27): 3248-3257.
- 14. Yang JJ, Zhou Q, Yan HH, et al. A phase Ⅲ randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer, 2017, 116(5): 568-574.
- 15. Sequist LV, Yang JC, Yamamoto N, et al. Phase Ⅲ study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J clin Oncol, 2013, 31(27): 3327-3334.
- 16. Yang JC, Hirsh V, Schuler M, et al. Symptom control and quality of life in LUX-lung 3: a phase Ⅲ study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013, 31(27): 3342-3350.
- 17. Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol, 2014, 15(2): 213-222.
- 18. Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol, 2015, 16(2): 141-151.
- 19. Park K, Tan EH, O'Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol, 2016, 17(5): 577-589.
- 20. Paz-Ares L, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase Ⅱb LUX-lung 7 trial. Ann oncol, 2017, 28(2): 270-277.
- 21. Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med, 2015, 372(18): 1689-1699.
- 22. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med, 2018, 378(2): 113-125.
- 23. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer, 2010, 10(11): 760-774.
- 24. Seto T, Kato T, Nishio M, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol, 2014, 15(11): 1236-1244.
- 25. Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol, 2019, 20(5): 625-635.
- 26. Noronha V, Patil VM, Joshi A, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol, 2019: Jco1901154.
- 27. Wu YL, Zhou C, Liam CK, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase Ⅲ, randomized, open-label, ensure study. Ann Oncol, 2015, 26(9): 1883-1889.
- 28. Lee CK, Brown C, Gralla RJ, et al. Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst, 2013, 105(9): 595-605.
- 29. Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol, 2017, 18(11): 1454-1466.
- 30. Mok TS, Cheng Y, Zhou X, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol, 2018, 36(22): 2244-2250.
- 31. Pikor LA, Ramnarine VR, Lam S, et al. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung cancer, 2013, 82(2): 179-189.
- 32. Boland JM, Erdogan S, Vasmatzis G, et al. Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum Pathol, 2009, 40(8): 1152-1158.
- 33. Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol, 2008, 3(1): 13-17.
- 34. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol, 2009, 27(26): 4247-4253.
- 35. Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med, 2014, 371(23): 2167-2177.
- 36. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med, 2013, 368(25): 2385-2394.
- 37. Solomon BJ, Kim DW, Wu YL, et al. Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol, 2018, 36(22): 2251-2258.
- 38. Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet, 2017, 390(10089): 29-39.
- 39. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med, 2017, 377(9): 829-838.
- 40. Camidge DR, Dziadziuszko R, Peters S, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase Ⅲ alex study. J Thorac Oncol, 2019, 14(7): 1233-1243.
- 41. Zhou C, Lu Y, Kim S, et al. Primary results of alesia: a randomised, phase Ⅲ, open-label study of alectinib vs crizotinib in Asian patients with treatment-naïve ALK+ advanced NSCLC. Ann Oncol, 2018, 29(Suppl 9): ix173-ix178.
- 42. Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet, 2017, 389(10072): 917-929.
- 43. Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med, 2018, 379(21): 2027-2039.
- 44. Bergethon K, Shaw AT, Ou SH, et al. Ros1 rearrangements definea unique molecular class of lung cancers. J Clin Oncol, 2012, 30(8): 863-870.
- 45. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med, 2014, 371(21): 1963-1971.
- 46. Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol, 2019, 30(7): 1121-1126.
- 47. Wu YL, Yang JC, Kim DW, et al. Phase Ⅱ study of crizotinib in east asian patients with ROS1-positive advanced non-small-cell lung cancer. J Clin Oncol, 2018, 36(14): 1405-1411.
- 48. Patil T, Smith DE, Bunn PA, et al. The incidence of brain metastases in stage ⅣROS1-rearranged non-small cell lung cancer and rate of central nervous system progression on crizotinib. J Thorac Oncol, 2018, 13(11): 1717-1726.
- 49. Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phaseⅠtrials (ALKA-372-001 and STARTRK-1). Cancer discov, 2017, 7(4): 400-409.
- 50. Lim SM, Kim HR, Lee JS, et al. Open-label, multicenter, phaseⅡ study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol, 2017, 35(23): 2613-2618.
- 51. Drilon A, Somwar R, Wagner JP, et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy ina patient with ROS1-rearranged lung cancer. Clin Cancer Res, 2016, 22(10): 2351-2358.
- 52. Sequist LV, Heist RS, Shaw AT, et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol, 2011, 22(12): 2616-2624.
- 53. Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol, 2011, 29(15): 2046-2051.
- 54. Litvak AM, Paik PK, Woo KM, et al. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol, 2014, 9(11): 1669-1674.
- 55. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF v600 mutations. N Engl J Med, 2015, 373(8): 726-736.
- 56. Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol, 2016, 17(5): 642-650.
- 57. Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFv600e-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol, 2017, 18(10): 1307-1316.
- 58. Hong DS, Bauer TM, Lee JJ, et al. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study. Ann Oncol, 2019, 30(2): 325-331.
- 59. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med, 2018, 378(8): 731-739.
- 60. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol, 2019, 21(2): 271-282.
- 61. Pillai RN, Behera M, Berry LD, et al. HER2 mutations in lung adenocarcinomas: a report from the lung cancer mutation consortium. Cancer, 2017, 123(21): 4099-4105.
- 62. Mazières J, Peters S, Lepage B, et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol, 2013, 31(16): 1997-2003.
- 63. De Grève J, Teugels E, Geers C, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung cancer, 2012, 76(1): 123-127.
- 64. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med, 2011, 3(75): 75ra26.
- 65. Bean J, Brennan C, Shih JY, et al. Met amplification occurs with or without T790m mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA, 2007, 104(52): 20932-20937.
- 66. Kubo T, Yamamoto H, Lockwood WW, et al. Met gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer, 2009, 124(8): 1778-1784.
- 67. Paik PK, Drilon A, Fan PD, et al. Response to MET inhibitors in patients with stage Ⅳ lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer discov, 2015, 5(8): 842-849.
- 68. Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer discov, 2015, 5(8): 850-859.
- 69. Takeuchi K, Soda M, Togashi Y, et al. Ret, ROS1 and ALK fusions in lung cancer. Nat Med, 2012, 18(3): 378-381.
- 70. Wang R, Hu H, Pan Y, et al. Ret fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol, 2012, 30(35): 4352-4359.
- 71. Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol, 2016, 17(12): 1653-1660.
- 72. Gautschi O, Zander T, Keller FA, et al. A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol, 2013, 8(5): e43-e44.