1. |
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw, 1994, 5(2): 157-166.
|
2. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
3. |
王博冉, 林夏, 朱晓东, 等. Lattice LSTM神经网络法中文医学文本命名实体识别模型研究. 中国卫生信息管理杂志, 2019, 16(1): 84-88.
|
4. |
张笑天. 基于Lattice LSTM的医学文本中文命名实体识别研究与实现. 成都: 电子科技大学, 2019.
|
5. |
王序文, 李姣, 吴英杰, 等. 基于BiLSTM-CRF的中文生物医学开放式概念关系抽取. 中华医学图书情报杂志, 2018, 27(11): 33-39.
|
6. |
Li PL, Yuan ZM, Tu WN, et al. Medical knowledge extraction and analysis from electronic medical records using deep learning. Chin Med Sci J, 2019, 34(2): 133-139.
|
7. |
黄梦醒, 李梦龙, 韩惠蕊. 基于电子病历的实体识别和知识图谱构建的研究. 计算机应用研究, 2019, 36(12): 3735-3739.
|
8. |
杨红梅, 李琳, 杨日东, 等. 基于双向LSTM神经网络电子病历命名实体的识别模型. 中国组织工程研究, 2018, 22(20): 3237-3242.
|
9. |
Liu Z, Yang M, Wang XL, et al. Entity recognition from clinical texts via recurrent neural network. BMC Med Inform Decis Mak, 2017, 17(Suppl 2): 67.
|
10. |
Zhao YS, Zhang KL, Ma HC, et al. Leveraging text skeleton for de-identification of electronic medical records. BMC Med Inform Decis Mak, 2018, 18(Suppl 1): 18.
|
11. |
Jiang Z, Zhao C, He B, et al. De-identification of medical records using conditional random fields and long short-term memory networks. J Biomed Inform, 2017, 75S: S43-S53.
|
12. |
陈美杉, 夏晨曦. 肝癌患者在线提问的命名实体识别研究: 一种基于迁移学习的方法. 数据分析与知识发现, 2019, 3(12): 61-69.
|
13. |
Abatemarco D, Perera S, Bao SH, et al. Training augmented intelligent capabilities for pharmacovigilance: applying deep-learning approaches to individual case safety report processing. Pharmaceut Med, 2018, 32(6): 391-401.
|
14. |
Zhou D, Miao L, He Y. Position-aware deep multi-task learning for drug-drug interaction extraction. Artif Intell Med, 2018, 87: 1-8.
|
15. |
Zheng W, Lin H, Luo L, et al. An attention-based effective neural model for drug-drug interactions extraction. BMC Bioinformatics, 2017, 18(1): 445.
|
16. |
Huang D, Jiang Z, Zou L, et al. Drug-drug interaction extraction from biomedical literature using support vector machine and long short term memory networks. Inf Sci, 2017, 415-416: 100-109.
|
17. |
Li H, Yang M, Chen QC, et al. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks. BMC Med Inform Decis Mak, 2018, 18(Suppl 2): 60.
|
18. |
Weng WH, Wagholikar KB, Mccray AT, et al. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. BMC Med Inform Decis Mak, 2017, 17(1): 155.
|
19. |
Luo Y. Recurrent neural networks for classifying relations in clinical notes. J Biomed Inform, 2017, 72: 85-95.
|
20. |
Hu Y, Wen GH, Ma JJ, et al. Label-indicator morpheme growth on LSTM for Chinese healthcare question department classification. J Biomed Inform, 2018, 82: 154-168.
|
21. |
Tahmasebi AM, Zhu H, Mankovich G, et al. Automatic normalization of anatomical phrases in radiology reports using unsupervised learning. J Digit Imaging, 2019, 32(1): 6-18.
|
22. |
Dergachyova O, Morandi X, Jannin P. Knowledge transfer for surgical activity prediction. Int J Comput Assist Radiol Surg, 2018, 13(9): 1409-1417.
|
23. |
Chen H, Gangaram V, Shih G. Developing a more responsive radiology resident dashboard. J Digit Imaging, 2019, 32(1): 81-90.
|
24. |
Wang H, Li C, Zhang JH, et al. A new LSTM-based gene expression prediction model: L-GEPM. J Bioinform Comput Biol, 2019, 17(4): 1950022.
|
25. |
谢尚欣. 基于深度学习的蛋白质二级结构预测. 杭州: 浙江理工大学, 2017.
|
26. |
王剑, 成金勇, 赵志刚, 等. 基于CNN与LSTM模型的蛋白质二级结构预测. 生物信息学, 2018, 16(2): 130-136.
|
27. |
郭延哺, 李维华, 王兵益, 等. 基于卷积长短时记忆神经网络的蛋白质二级结构预测. 模式识别与人工智能, 2018, 31(6): 562-568.
|
28. |
吴辉. 利用序列信息预测蛋白质二级结构的深度学习模型研究. 天津: 天津大学, 2017.
|
29. |
曹成远, 吕强. 使用双向LSTM的深度神经网络预测蛋白质残基相互作用. 小型微型计算机系统, 2017, 38(3): 531-535.
|
30. |
凌少平. 基于递归神经网的蛋白质结构域预测方法研究. 湘潭: 湘潭大学, 2007.
|
31. |
黄易初. 基于深度学习的蛋白质结构域边界预测研究. 武汉: 华中科技大学, 2016.
|
32. |
Hochreiter S, Heusel M, Obermayer K. Fast model-based protein homology detection without alignment. Bioinformatics, 2007, 23(14): 1728-1736.
|
33. |
Li S, Chen J, Liu B. Protein remote homology detection based on bidirectional long short-term memory. BMC Bioinformatics, 2017, 18(1): 443.
|
34. |
王帅, 蔡磊鑫, 顾倜, 等. 运用双向LSTM拟合RNA二级结构打分函数. 计算机应用与软件, 2017, 34(9): 232-239.
|
35. |
姜鹏. 多态性位点和致病基因的检测模型构建与算法研究. 南宁: 广西大学, 2017.
|
36. |
Nagarajan D, Nagarajan T, Roy N, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem, 2018, 293(10): 3492-3509.
|
37. |
范光鹏, 孙仁诚, 邵峰晶. HIV-1蛋白酶切割位点预测研究. 青岛大学学报(工程技术版), 2018, 33(2): 1-6.
|
38. |
张娅楠, 赵涓涓, 赵鑫, 等. 多模态融合下长时程肺部病灶良恶性预测方法. 计算机工程与应用, 2019, 55(10): 146-153.
|
39. |
Han Z, Wei BZ, Mercado A, et al. Spine-GAN: semantic segmentation of multiple spinal structures. Med Image Anal, 2018, 50: 23-35.
|
40. |
Pei M, Wu X, Guo Y, et al. Small bowel motility assessment based on fully convolutional networks and long short-term memory. Knowl Based Syst, 2017, 121: 163-172.
|
41. |
He X, Yang Y, Shi B, et al. VD-SAN: visual-densely semantic attention network for image caption generation. Neurocomputing, 2018, 328(7): 48-55.
|
42. |
安莹莹. 基于深度学习的小儿白内障裂隙图像诊断研究及治疗效果预测. 西安: 西安电子科技大学, 2017.
|
43. |
Azizi S, Van WN, Sojoudi S, et al. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy. Int J Comput Assist Radiol Surg, 2018, 13(8): 1201-1209.
|
44. |
Ahmedt-Aristizabal D, Fookes C, Nguyen K, et al. Deep facial analysis: a new phase I epilepsy evaluation using computer vision. Epilepsy Behav, 2018, 82: 17-24.
|
45. |
Oh SL, Ng E, Tan RS, et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med, 2018, 102: 278-287.
|
46. |
Swapna G, Soman KP, Vinayakumar R. Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Comput Sci, 2018, 132: 1192-1201.
|
47. |
Andersen RS, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst Appl, 2018, 115: 465-473.
|
48. |
李雪. 基于LSTM的心律失常分类研究. 兰州: 兰州大学, 2018.
|
49. |
Swapna G, Soman Kp, Vinayakumar R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Comp Sci, 2018, 132: 1253-1262.
|
50. |
Tan JH, Hagiwara Y, Pang W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med, 2018, 94: 19-26.
|
51. |
Qiu Y, Huang K, Xiao F, et al. A segment-wise reconstruction method based on bidirectional long short term memory for power line interference suppression. Biocybern Biomed Eng, 2018, 38(2): 217-227.
|
52. |
辛雨航. 基于半监督与时序模型的脑电信号特征提取方法研究. 济南: 山东大学, 2018.
|
53. |
安恩莹. 基于时序信息的脑电信号分类. 北京: 北京邮电大学, 2018.
|
54. |
张秀丽, 夏斌. 基于CNN-LSTM网络的睡眠分期研究. 微型机与应用, 2017, 36(17): 88-91.
|
55. |
Tsiouris ΚΜ, Pezoulas VC, Zervakis M, et al. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med, 2018, 99: 24-37.
|
56. |
Li Y, Charalampaki P, Liu Y, et al. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J Comput Assist Radiol Surg, 2018, 13(8): 1187-1199.
|
57. |
郭彦杰. 基于循环神经网络的脉搏信号分析研究. 北京: 北京邮电大学, 2018.
|
58. |
Zhao A, Qi L, Dong J, et al. Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases. Knowl Based Syst, 2018, 145: 91-97.
|
59. |
Medina-Quero J, Zhang S, Nugent C, et al. Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst Appl, 2018, 114: 441-453.
|
60. |
Taramasco C, Lazo Y, Rodenas T, et al. System design for emergency alert triggered by falls using convolutional neural networks. J Med Syst, 2020, 44(2): 50.
|
61. |
Liu ZC, Ling ZH, Dai LR. Articulatory-to-acoustic conversion using BLSTM-RNNs with augmented input representation. Speech Commun, 2018, 99: 161-172.
|
62. |
Chen T, Zhang X, Jiang H, et al. Are you smoking? Automatic alert system helping people keep away from cigarettes. Smart Health, 2018, 9-10: 158-169.
|
63. |
朱静阳. 基于LDBN的心脏病发病风险模型研究. 郑州: 郑州大学, 2017.
|
64. |
陈德华, 殷苏娜, 乐嘉锦, 等. 一种面向临床领域时序知识图谱的链接预测模型. 计算机研究与发展, 2017, 54(12): 2687-2697.
|
65. |
Kam HJ, Kim HY. Learning representations for the early detection of sepsis with deep neural networks. Comput Biol Med, 2017, 89: 248-255.
|
66. |
郑亚鹏, 樊璐. 基于LSTM的临床血液需求预测方法. 计算机与现代化, 2018(5): 41-44, 120.
|
67. |
柴龙凯. 基于数据(序列模式)挖掘的医院物资使用量预测模型研究. 青岛: 青岛科技大学, 2018.
|
68. |
Reddy BK, Delen D. Predicting hospital readmission for lupus patients: an RNN-LSTM-based deep-learning methodology. Comput Biol Med, 2018, 101: 199-209.
|
69. |
卢鹏飞, 须成杰, 张敬谊, 等. 基于SARIMA-LSTM的门诊量预测研究. 大数据, 2019, 5(6): 101-110.
|
70. |
韩天齐, 宋波. 基于LSTM神经网络的麻疹发病率预测. 电脑与电信, 2018(5): 54-57.
|