- 1. Department of Otolaryngology-Head and Neck Surgery, Taizhou People’s Hospital, Taizhou, Jiangsu 225300, P. R. China;
- 2. Graduate School, Dalian Medical University, Dalian, Liaoning 116027, P. R. China;
Chloride voltage-gated channel 7 (CLCN7) gene mutations can cause the disorder of acidification in lacunas and osteolysis, leading to osteopetrosis characterized by increased bone density throughout the body and lysosomal storage diseases. Deafness can be caused by nerve injury for bone compression, negative pressure in the middle ear and otosclerosis. This article will introduce structure and function of CLCN7 gene and CLCN7 protein, osteolysis process, including the introduction of osteoclasts and the mechanism of osteolysis, osteopetrosis, mechanism and treatment of osteopetrosis caused by CLCN7 gene mutations, as well as osteopetrosis and syndromic deafness, in order to provide a basis for clinical diagnosis and treatment.
Citation: LIU Mengxiao, PANG Xiuhong. Research progress on the mechanism of chloride voltage-gated channel 7 gene-induced syndromic deafness-associated osteopetrosis. West China Medical Journal, 2021, 36(4): 529-534. doi: 10.7507/1002-0179.202007228 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Parker M, Bitner-Glindzicz M. Republished: genetic investigations in childhood deafness. Postgrad Med J, 2015, 91(1077): 395-402. |
2. | Angeli S, Lin X, Liu XZ. Genetics of hearing and deafness. Anat Rec (Hoboken), 2012, 295(11): 1812-1829. |
3. | Li L, Lv SS, Wang C, et al. Novel CLCN7 mutations cause autosomal dominant osteopetrosis type II and intermediate autosomal recessive osteopetrosis. Mol Med Rep, 2019, 19(6): 5030-5038. |
4. | Palagano E, Menale C, Sobacchi C, et al. Genetics of osteopetrosis. Curr Osteoporos Rep, 2018, 16(1): 13-25. |
5. | Zhang X, Wei Z, He J, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADOII) and intermediate autosomal recessive osteopetrosis (ARO) in seven Chinese families. Postgrad Med, 2017, 129(8): 934-942. |
6. | Leisle L, Ludwig CF, Wagner FA, et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J, 2011, 30(11): 2140-2152. |
7. | Zhao Q, Wei Q, He A, et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration. Biochem Biophys Res Commun, 2009, 384(3): 277-279. |
8. | Kornak U, Kasper D, Bösl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 2001, 104(2): 205-215. |
9. | Chalhoub N, Benachenhou N, Rajapurohitam V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med, 2003, 9(4): 399-406. |
10. | Kasper D, Planells-Cases R, Fuhrmann JC, et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J, 2005, 24(5): 1079-1091. |
11. | Pang Q, Chi Y, Zhao Z, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int, 2016, 27(3): 1047-1055. |
12. | Cleiren E, Bénichou O, Van Hul E, et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CLCN7 chloride channel gene. Hum Mol Genet, 2001, 10(25): 2861-2867. |
13. | Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287-294. |
14. | Lange PF, Wartosch L, Jentsch TJ, et al. ClC-7 requires Ostm1 asa beta-subunit to support bone resorption and lysosomal function. Nature, 2006, 440(7081): 220-223. |
15. | Chen X, Zhang K, Hock J, et al. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res, 2016, 4: 16035. |
16. | Faulkner B, Astleford K, Mansky KC. Regulation of osteoclast differentiation and skeletal maintenance by histone deacetylases. Molecules, 2019, 24(7): 1355. |
17. | Li Y, Lin S, Liu P, et al. Carnosol suppresses RANKL-induced osteoclastogenesis and attenuates titanium particles-induced osteolysis. J Cell Physiol, 2021, 236(3): 1950-1966. |
18. | Cappariello A, Maurizi A, Veeriah V, et al. The great beauty of the osteoclast. Arch Biochem Biophys, 2014, 558: 70-78. |
19. | Landa J, Margolis N, Di Cesare P. Orthopaedic management of the patient with osteopetrosis. J Am Acad Orthop Surg, 2007, 15(11): 654-662. |
20. | Szewczyk KA, Fuller K, Chambers TJ. Distinctive subdomains in the resorbing surface of osteoclasts. PLoS One, 2013, 8(3): e60285. |
21. | Kajiya H, Okamoto F, Ohgi K, et al. Characteristics of ClC7Cl-channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hCLCN7 gene-expressing cells. Pflugers Arch, 2009, 458(6): 1049-1059. |
22. | Kwakwa KA, Sterling JA. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel), 2017, 9(7): 84. |
23. | Blair HC, Athanasou NA. Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol, 2004, 19(1): 189-199. |
24. | Lotz EM, Lohmann CH, Boyan BD, et al. Bisphosphonates inhibit surface-mediated osteogenesis. J Biomed Mater Res A, 2020, 108(8): 1774-1786. |
25. | Bubshait DK, Himdy ZE, Fadaaq O, et al. Malignant infantile osteopetrosis: a case report. Cureus, 2020, 12(1): e6725. |
26. | Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone, 2017, 102: 50-59. |
27. | Ghiasi MS, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep, 2017, 6: 87-100. |
28. | Morethson P. Extracellular fluid flow and chloride content modulate H(+) transport by osteoclasts. BMC Cell Biol, 2015, 16: 20. |
29. | Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet, 2009, 124(6): 561-577. |
30. | Whyte MP. Carbonic anhydrase II deficiency. Clin Orthop Relat Res, 1993(294): 52-63. |
31. | Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 1996, 273(5279): 1236-1238. |
32. | Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol, 2002, 3(2): 94-103. |
33. | Ludwig CF, Ullrich F, Leisle L, et al. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem, 2013, 288(40): 28611-28619. |
34. | Henriksen K, Sørensen MG, Jensen VK, et al. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int, 2008, 83(3): 230-242. |
35. | Jayasena CS, Bronner ME. Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF-β signaling. J Cell Biol, 2012, 199(3): 453-466. |
36. | Wong CO, Gregory S, Hu H, et al. Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages. Cell Host Microbe, 2017, 21(6): 719-730. e6. |
37. | Nicoli ER, Weston MR, Hackbarth M, et al. Lysosomal storage and albinism due to effects of a de novo CLCN7 variant on lysosomal acidification. Am J Hum Genet, 2019, 104(6): 1127-1138. |
38. | Kim SY, Lee Y, Kang YE, et al. Genetic analysis of CLCN7 in an old female patient with type II autosomal dominant osteopetrosis. Endocrinol Metab (Seoul), 2018, 33(3): 380-386. |
39. | Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int, 2005, 77(5): 263-274. |
40. | Perdu B, Odgren PR, Van Wesenbeeck L, et al. Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, CLCN7, Atp6v0c, and Slc9a3r2. Calcif Tissue Int, 2009, 84(5): 355-360. |
41. | Zhou C, Wang Y, Peng J, et al. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J Cell Biochem, 2017, 118(12): 4664-4671. |
42. | Stattin EL, Henning P, Klar J, et al. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep, 2017, 7(1): 3012. |
43. | Witwicka H, Jia H, Kutikov A, et al. TRAFD1 (FLN29) interacts with plekhm1 and regulates osteoclast acidification and resorption. PLoS One, 2015, 10(5): e0127537. |
44. | Koçak G, Güzel BN, Mıhçı E, et al. TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis. Gene, 2019, 702: 83-88. |
45. | Xue Y, Wang W, Mao T, et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg, 2012, 40(5): 416-420. |
46. | Maurizi A, Capulli M, Curle A, et al. Extra-skeletal manifestations in mice affected by CLCN7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications. Bone Res, 2019, 7: 17. |
47. | Imel EA, Liu Z, Acton D, et al. Interferon gamma-1b does not increase markers of bone resorption in autosomal dominant osteopetrosis. J Bone Miner Res, 2019, 34(8): 1436-1445. |
48. | Letizia C, Taranta A, Migliaccio S, et al. Type II benign osteopetrosis (Albers-Schönberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int, 2004, 74(1): 42-46. |
49. | Kang S, Kang YK, Lee JA, et al. A case of autosomal dominant osteopetrosis type 2 with a CLCN7 gene mutation. J Clin Res Pediatr Endocrinol, 2019, 11(4): 439-443. |
50. | Kovacs CS, Lambert RG, Lavoie GJ, et al. Centrifugal osteopetrosis: appendicular sclerosis with relative sparing of the vertebrae. Skeletal Radiol, 1995, 24(1): 27-29. |
51. | Khan MA, Ullah A, Naeem M. Whole exome sequencing identified two novel homozygous missense variants in the same codon of CLCN7 underlying autosomal recessive infantile malignant osteopetrosis in a Pakistani family. Mol Biol Rep, 2018, 45(4): 565-570. |
52. | Gillani S, Abbas Z. Malignant infantile osteopetrosis. J Ayub Med Coll Abbottabad, 2017, 29(2): 350-352. |
53. | Bo T, Yan F, Guo J, et al. Characterization of a relatively malignant form of osteopetrosis caused by a novel mutation in the PLEKHM1 gene. J Bone Miner Res, 2016, 31(11): 1979-1987. |
54. | Chorin O, Yachelevich N, Mohamed K, et al. Transcriptome sequencing identifies a noncoding, deep intronic variant in CLCN7 causing autosomal recessive osteopetrosis. Mol Genet Genomic Med, 2020, 8(10): e1405. |
55. | Yang Y, Ye W, Guo J, et al. CLCN7 and TCIRG1 mutations in a single family: evidence for digenic inheritance of osteopetrosis. Mol Med Rep, 2019, 19(1): 595-600. |
56. | Satapathy AK, Pandey S, Chaudhary MR, et al. Report of another mutation proven case of carbonic anhydrase II deficiency. J Pediatr Genet, 2019, 8(2): 91-94. |
57. | Zhang XY, He JW, Fu WZ, et al. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin, 2017, 38(11): 1456-1465. |
58. | Paulose KO, Al Khalifa S, Shenoy P, et al. Osteopetrosis (marble bone disease)--agenesis of paranasal sinuses. J Laryngol Otol, 1988, 102(11): 1047-1051. |
59. | Howaldt A, Nampoothiri S, Quell LM, et al. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone, 2019, 120: 495-503. |
60. | da Silva VP, Visioli F, Maraschin BJ, et al. Oral lesions in pycnodysostosis syndrome: eleven years of follow-up. J Craniofac Surg, 2016, 27(7): e617-e618. |
61. | Campos-Xavier AB, Saraiva JM, Ribeiro LM, et al. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet, 2003, 112(2): 186-189. |
62. | Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat, 2010, 31(1): E1071-E1080. |
63. | Zhang Y, Ji D, Li L, et al. ClC-7 regulates the pattern and early development of craniofacial bone and tooth. Theranostics, 2019, 9(5): 1387-1400. |
64. | Barvencik F, Kurth I, Koehne T, et al. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J Bone Miner Res, 2014, 29(4): 982-991. |
65. | Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone, 2008, 42(1): 19-29. |
66. | Sartelet A, Stauber T, Coppieters W, et al. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle. Dis Model Mech, 2014, 7(1): 119-128. |
67. | Supanchart C, Wartosch L, Schlack C, et al. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion. Bone, 2014, 58: 92-102. |
68. | Ohgi K, Okamoto F, Kajiya H, et al. Antibodies against ClC7 inhibit extracellular acidification-induced Cl− currents and bone resorption activity in mouse osteoclasts. Naunyn Schmiedebergs Arch Pharmacol, 2011, 383(1): 79-90. |
69. | Okamoto N, Kohmoto T, Naruto T, et al. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis. Hum Genome Var, 2017, 4: 17036. |
70. | Wen X, Lacruz RS, Paine ML. Dental and cranial pathologies in mice lacking the Cl(-) /H(+)-exchanger ClC-7. Anat Rec (Hoboken), 2015, 298(8): 1502-1508. |
71. | Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol, 2013, 9(9): 522-536. |
72. | Whyte MP, Kempa LG, McAlister WH, et al. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schönberg disease (chloride channel 7 deficiency osteopetrosis) among the sclerosing bone disorders. J Bone Miner Res, 2010, 25(11): 2515-2526. |
73. | Okur FV, Cevher İ, Özdemir C, et al. Osteopetrotic induced pluripotent stem cells derived from patients with different disease-associated mutations by non-integrating reprogramming methods. Stem Cell Res Ther, 2019, 10(1): 211. |
74. | Stepensky P, Grisariu S, Avni B, et al. Stem cell transplantation for osteopetrosis in patients beyond the age of 5 years. Blood Adv, 2019, 3(6): 862-868. |
75. | Maurizi A, Capulli M, Patel R, et al. RNA interference therapy for autosomal dominant osteopetrosis type 2. Towards the preclinical development. Bone, 2018, 110: 343-354. |
76. | Stocks RM, Wang WC, Thompson JW, et al. Malignant infantile osteopetrosis: otolaryngological complications and management. Arch Otolaryngol Head Neck Surg, 1998, 124(6): 689-694. |
77. | van Hove RP, de Jong T, Nolte PA. Autosomal dominant type I osteopetrosis is related with iatrogenic fractures in arthroplasty. Clin Orthop Surg, 2014, 6(4): 484-488. |
78. | Patel A, Prinsley P. Our experience of stapes superstructure and incudostapedial joint preservation in otosclerosis surgery. Clin Otolaryngol, 2019, 44(3): 479-482. |
79. | Andreu-Arasa VC, Sung EK, Fujita A, et al. Otosclerosis and dysplasias of the temporal bone. Neuroimaging Clin N Am, 2019, 29(1): 29-47. |
80. | Quesnel AM, Ishai R, McKenna MJ. Otosclerosis: temporal bone pathology. Otolaryngol Clin North Am, 2018, 51(2): 291-303. |
81. | Rajput MSA, Arain AA, Rajput AA, et al. Otosclerosis: experience with stapes surgery. Cureus, 2020, 12(5): e7927. |
82. | Cureoglu S, Baylan MY, Paparella MM. Cochlear otosclerosis. Curr Opin Otolaryngol Head Neck Surg, 2010, 18(5): 357-362. |
- 1. Parker M, Bitner-Glindzicz M. Republished: genetic investigations in childhood deafness. Postgrad Med J, 2015, 91(1077): 395-402.
- 2. Angeli S, Lin X, Liu XZ. Genetics of hearing and deafness. Anat Rec (Hoboken), 2012, 295(11): 1812-1829.
- 3. Li L, Lv SS, Wang C, et al. Novel CLCN7 mutations cause autosomal dominant osteopetrosis type II and intermediate autosomal recessive osteopetrosis. Mol Med Rep, 2019, 19(6): 5030-5038.
- 4. Palagano E, Menale C, Sobacchi C, et al. Genetics of osteopetrosis. Curr Osteoporos Rep, 2018, 16(1): 13-25.
- 5. Zhang X, Wei Z, He J, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADOII) and intermediate autosomal recessive osteopetrosis (ARO) in seven Chinese families. Postgrad Med, 2017, 129(8): 934-942.
- 6. Leisle L, Ludwig CF, Wagner FA, et al. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J, 2011, 30(11): 2140-2152.
- 7. Zhao Q, Wei Q, He A, et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration. Biochem Biophys Res Commun, 2009, 384(3): 277-279.
- 8. Kornak U, Kasper D, Bösl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell, 2001, 104(2): 205-215.
- 9. Chalhoub N, Benachenhou N, Rajapurohitam V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med, 2003, 9(4): 399-406.
- 10. Kasper D, Planells-Cases R, Fuhrmann JC, et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J, 2005, 24(5): 1079-1091.
- 11. Pang Q, Chi Y, Zhao Z, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int, 2016, 27(3): 1047-1055.
- 12. Cleiren E, Bénichou O, Van Hul E, et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CLCN7 chloride channel gene. Hum Mol Genet, 2001, 10(25): 2861-2867.
- 13. Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287-294.
- 14. Lange PF, Wartosch L, Jentsch TJ, et al. ClC-7 requires Ostm1 asa beta-subunit to support bone resorption and lysosomal function. Nature, 2006, 440(7081): 220-223.
- 15. Chen X, Zhang K, Hock J, et al. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res, 2016, 4: 16035.
- 16. Faulkner B, Astleford K, Mansky KC. Regulation of osteoclast differentiation and skeletal maintenance by histone deacetylases. Molecules, 2019, 24(7): 1355.
- 17. Li Y, Lin S, Liu P, et al. Carnosol suppresses RANKL-induced osteoclastogenesis and attenuates titanium particles-induced osteolysis. J Cell Physiol, 2021, 236(3): 1950-1966.
- 18. Cappariello A, Maurizi A, Veeriah V, et al. The great beauty of the osteoclast. Arch Biochem Biophys, 2014, 558: 70-78.
- 19. Landa J, Margolis N, Di Cesare P. Orthopaedic management of the patient with osteopetrosis. J Am Acad Orthop Surg, 2007, 15(11): 654-662.
- 20. Szewczyk KA, Fuller K, Chambers TJ. Distinctive subdomains in the resorbing surface of osteoclasts. PLoS One, 2013, 8(3): e60285.
- 21. Kajiya H, Okamoto F, Ohgi K, et al. Characteristics of ClC7Cl-channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hCLCN7 gene-expressing cells. Pflugers Arch, 2009, 458(6): 1049-1059.
- 22. Kwakwa KA, Sterling JA. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel), 2017, 9(7): 84.
- 23. Blair HC, Athanasou NA. Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol, 2004, 19(1): 189-199.
- 24. Lotz EM, Lohmann CH, Boyan BD, et al. Bisphosphonates inhibit surface-mediated osteogenesis. J Biomed Mater Res A, 2020, 108(8): 1774-1786.
- 25. Bubshait DK, Himdy ZE, Fadaaq O, et al. Malignant infantile osteopetrosis: a case report. Cureus, 2020, 12(1): e6725.
- 26. Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone, 2017, 102: 50-59.
- 27. Ghiasi MS, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep, 2017, 6: 87-100.
- 28. Morethson P. Extracellular fluid flow and chloride content modulate H(+) transport by osteoclasts. BMC Cell Biol, 2015, 16: 20.
- 29. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet, 2009, 124(6): 561-577.
- 30. Whyte MP. Carbonic anhydrase II deficiency. Clin Orthop Relat Res, 1993(294): 52-63.
- 31. Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science, 1996, 273(5279): 1236-1238.
- 32. Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol, 2002, 3(2): 94-103.
- 33. Ludwig CF, Ullrich F, Leisle L, et al. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem, 2013, 288(40): 28611-28619.
- 34. Henriksen K, Sørensen MG, Jensen VK, et al. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int, 2008, 83(3): 230-242.
- 35. Jayasena CS, Bronner ME. Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF-β signaling. J Cell Biol, 2012, 199(3): 453-466.
- 36. Wong CO, Gregory S, Hu H, et al. Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages. Cell Host Microbe, 2017, 21(6): 719-730. e6.
- 37. Nicoli ER, Weston MR, Hackbarth M, et al. Lysosomal storage and albinism due to effects of a de novo CLCN7 variant on lysosomal acidification. Am J Hum Genet, 2019, 104(6): 1127-1138.
- 38. Kim SY, Lee Y, Kang YE, et al. Genetic analysis of CLCN7 in an old female patient with type II autosomal dominant osteopetrosis. Endocrinol Metab (Seoul), 2018, 33(3): 380-386.
- 39. Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int, 2005, 77(5): 263-274.
- 40. Perdu B, Odgren PR, Van Wesenbeeck L, et al. Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, CLCN7, Atp6v0c, and Slc9a3r2. Calcif Tissue Int, 2009, 84(5): 355-360.
- 41. Zhou C, Wang Y, Peng J, et al. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J Cell Biochem, 2017, 118(12): 4664-4671.
- 42. Stattin EL, Henning P, Klar J, et al. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep, 2017, 7(1): 3012.
- 43. Witwicka H, Jia H, Kutikov A, et al. TRAFD1 (FLN29) interacts with plekhm1 and regulates osteoclast acidification and resorption. PLoS One, 2015, 10(5): e0127537.
- 44. Koçak G, Güzel BN, Mıhçı E, et al. TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis. Gene, 2019, 702: 83-88.
- 45. Xue Y, Wang W, Mao T, et al. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg, 2012, 40(5): 416-420.
- 46. Maurizi A, Capulli M, Curle A, et al. Extra-skeletal manifestations in mice affected by CLCN7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications. Bone Res, 2019, 7: 17.
- 47. Imel EA, Liu Z, Acton D, et al. Interferon gamma-1b does not increase markers of bone resorption in autosomal dominant osteopetrosis. J Bone Miner Res, 2019, 34(8): 1436-1445.
- 48. Letizia C, Taranta A, Migliaccio S, et al. Type II benign osteopetrosis (Albers-Schönberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int, 2004, 74(1): 42-46.
- 49. Kang S, Kang YK, Lee JA, et al. A case of autosomal dominant osteopetrosis type 2 with a CLCN7 gene mutation. J Clin Res Pediatr Endocrinol, 2019, 11(4): 439-443.
- 50. Kovacs CS, Lambert RG, Lavoie GJ, et al. Centrifugal osteopetrosis: appendicular sclerosis with relative sparing of the vertebrae. Skeletal Radiol, 1995, 24(1): 27-29.
- 51. Khan MA, Ullah A, Naeem M. Whole exome sequencing identified two novel homozygous missense variants in the same codon of CLCN7 underlying autosomal recessive infantile malignant osteopetrosis in a Pakistani family. Mol Biol Rep, 2018, 45(4): 565-570.
- 52. Gillani S, Abbas Z. Malignant infantile osteopetrosis. J Ayub Med Coll Abbottabad, 2017, 29(2): 350-352.
- 53. Bo T, Yan F, Guo J, et al. Characterization of a relatively malignant form of osteopetrosis caused by a novel mutation in the PLEKHM1 gene. J Bone Miner Res, 2016, 31(11): 1979-1987.
- 54. Chorin O, Yachelevich N, Mohamed K, et al. Transcriptome sequencing identifies a noncoding, deep intronic variant in CLCN7 causing autosomal recessive osteopetrosis. Mol Genet Genomic Med, 2020, 8(10): e1405.
- 55. Yang Y, Ye W, Guo J, et al. CLCN7 and TCIRG1 mutations in a single family: evidence for digenic inheritance of osteopetrosis. Mol Med Rep, 2019, 19(1): 595-600.
- 56. Satapathy AK, Pandey S, Chaudhary MR, et al. Report of another mutation proven case of carbonic anhydrase II deficiency. J Pediatr Genet, 2019, 8(2): 91-94.
- 57. Zhang XY, He JW, Fu WZ, et al. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin, 2017, 38(11): 1456-1465.
- 58. Paulose KO, Al Khalifa S, Shenoy P, et al. Osteopetrosis (marble bone disease)--agenesis of paranasal sinuses. J Laryngol Otol, 1988, 102(11): 1047-1051.
- 59. Howaldt A, Nampoothiri S, Quell LM, et al. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone, 2019, 120: 495-503.
- 60. da Silva VP, Visioli F, Maraschin BJ, et al. Oral lesions in pycnodysostosis syndrome: eleven years of follow-up. J Craniofac Surg, 2016, 27(7): e617-e618.
- 61. Campos-Xavier AB, Saraiva JM, Ribeiro LM, et al. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet, 2003, 112(2): 186-189.
- 62. Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat, 2010, 31(1): E1071-E1080.
- 63. Zhang Y, Ji D, Li L, et al. ClC-7 regulates the pattern and early development of craniofacial bone and tooth. Theranostics, 2019, 9(5): 1387-1400.
- 64. Barvencik F, Kurth I, Koehne T, et al. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J Bone Miner Res, 2014, 29(4): 982-991.
- 65. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone, 2008, 42(1): 19-29.
- 66. Sartelet A, Stauber T, Coppieters W, et al. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle. Dis Model Mech, 2014, 7(1): 119-128.
- 67. Supanchart C, Wartosch L, Schlack C, et al. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion. Bone, 2014, 58: 92-102.
- 68. Ohgi K, Okamoto F, Kajiya H, et al. Antibodies against ClC7 inhibit extracellular acidification-induced Cl− currents and bone resorption activity in mouse osteoclasts. Naunyn Schmiedebergs Arch Pharmacol, 2011, 383(1): 79-90.
- 69. Okamoto N, Kohmoto T, Naruto T, et al. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis. Hum Genome Var, 2017, 4: 17036.
- 70. Wen X, Lacruz RS, Paine ML. Dental and cranial pathologies in mice lacking the Cl(-) /H(+)-exchanger ClC-7. Anat Rec (Hoboken), 2015, 298(8): 1502-1508.
- 71. Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol, 2013, 9(9): 522-536.
- 72. Whyte MP, Kempa LG, McAlister WH, et al. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schönberg disease (chloride channel 7 deficiency osteopetrosis) among the sclerosing bone disorders. J Bone Miner Res, 2010, 25(11): 2515-2526.
- 73. Okur FV, Cevher İ, Özdemir C, et al. Osteopetrotic induced pluripotent stem cells derived from patients with different disease-associated mutations by non-integrating reprogramming methods. Stem Cell Res Ther, 2019, 10(1): 211.
- 74. Stepensky P, Grisariu S, Avni B, et al. Stem cell transplantation for osteopetrosis in patients beyond the age of 5 years. Blood Adv, 2019, 3(6): 862-868.
- 75. Maurizi A, Capulli M, Patel R, et al. RNA interference therapy for autosomal dominant osteopetrosis type 2. Towards the preclinical development. Bone, 2018, 110: 343-354.
- 76. Stocks RM, Wang WC, Thompson JW, et al. Malignant infantile osteopetrosis: otolaryngological complications and management. Arch Otolaryngol Head Neck Surg, 1998, 124(6): 689-694.
- 77. van Hove RP, de Jong T, Nolte PA. Autosomal dominant type I osteopetrosis is related with iatrogenic fractures in arthroplasty. Clin Orthop Surg, 2014, 6(4): 484-488.
- 78. Patel A, Prinsley P. Our experience of stapes superstructure and incudostapedial joint preservation in otosclerosis surgery. Clin Otolaryngol, 2019, 44(3): 479-482.
- 79. Andreu-Arasa VC, Sung EK, Fujita A, et al. Otosclerosis and dysplasias of the temporal bone. Neuroimaging Clin N Am, 2019, 29(1): 29-47.
- 80. Quesnel AM, Ishai R, McKenna MJ. Otosclerosis: temporal bone pathology. Otolaryngol Clin North Am, 2018, 51(2): 291-303.
- 81. Rajput MSA, Arain AA, Rajput AA, et al. Otosclerosis: experience with stapes surgery. Cureus, 2020, 12(5): e7927.
- 82. Cureoglu S, Baylan MY, Paparella MM. Cochlear otosclerosis. Curr Opin Otolaryngol Head Neck Surg, 2010, 18(5): 357-362.