1. |
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation, 2021, 143(8): e254-e743.
|
2. |
Lewiecki EM, Blicharski T, Goemaere S, et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab, 2018, 103(9): 3183-3193.
|
3. |
Catalano A, Bellone F, Morabito N, et al. Sclerostin and vascular pathophysiology. Int J Mol Sci, 2020, 21(13): 4779.
|
4. |
Shui X, Dong R, Wu Z, et al. Association of serum sclerostin and osteoprotegerin levels with the presence, severity and prognosis in patients with acute myocardial infarction. BMC Cardiovasc Disord, 2022, 22(1): 213.
|
5. |
Semënov M, Tamai K, HE X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem, 2005, 280(29): 26770-26775.
|
6. |
孙婷婷, 王凯. 骨代谢相关因子参与动脉粥样硬化的研究进展. 上海医学, 2022, 45(2): 125-129.
|
7. |
Khan K, Yu B, Tardif JC, et al. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med, 2024, 11: 1360380.
|
8. |
Alrefaei AF, Abu-Elmagd M. LRP6 receptor plays essential functions in development and human diseases. Genes (Basel), 2022, 13(1): 120.
|
9. |
Alesutan I, Henze LA, Boehme B, et al. Periostin augments vascular smooth muscle cell calcification via β-catenin signaling. Biomolecules, 2022, 12(8): 1157.
|
10. |
De Maré A, Opdebeeck B, Neven E, et al. Sclerostin protects against vascular calcification development in mice. J Bone Miner Res, 2022, 37(4): 687-699.
|
11. |
González-Salvatierra S, García-Fontana C, Lacal J, et al. Cardioprotective function of sclerostin by reducing calcium deposition, proliferation, and apoptosis in human vascular smooth muscle cells. Cardiovasc Diabetol, 2023, 22(1): 301.
|
12. |
Wu CF, Liou HH, Kuo CC, et al. The association of urinary sclerostin and renal magnesium handling in type 2 diabetic patients with chronic kidney disease. Kidney Blood Press Res, 2021, 46(4): 514-522.
|
13. |
罗静, 王琰, 张瑞, 等. 慢性肾衰竭血液透析患者 IL-13、FGF23、SOST 水平变化与血管钙化的关系. 西南医科大学学报, 2024, 47(4): 325-329.
|
14. |
殷雪娇, 徐阳星, 徐秀容, 等. 血清骨膜蛋白和骨硬化蛋白对老年 2 型糖尿病患者骨质疏松的诊断价值. 中国现代医学杂志, 2023, 33(1): 7-12.
|
15. |
阮杨, 魏欣, 李群. 血清骨硬化蛋白、OPG、OPG/TRAIL 比值对高血压伴慢性心力衰竭患者发生主要不良心血管事件的预测价值. 检验医学与临床, 2024, 21(13): 1945-1949, 1954.
|
16. |
Olkowicz M, Czyzynska-Cichon I, Szupryczynska N, et al. Multi-omic signatures of atherogenic dyslipidaemia: pre-clinical target identification and validation in humans. J Transl Med, 2021, 19(1): 6.
|
17. |
Krishna SM, Seto SW, Jose RJ, et al. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II-induced aortic aneurysm and atherosclerosis. Arterioscler Thromb Vasc Biol, 2017, 37(3): 553-566.
|
18. |
Zheng J, Wheeler E, Pietzner M, et al. Lowering of circulating sclerostin may increase risk of atherosclerosis and its risk factors: evidence from a genome-wide association meta-analysis followed by Mendelian randomization. Arthritis Rheumatol, 2023, 75(10): 1781-1792.
|
19. |
Staley JR, Giannakopoulou O, Holdsworth G, et al. Genetic data do not provide evidence that lower sclerostin is associated with increased risk of atherosclerosis: comment on the article by Zheng et al. Arthritis Rheumatol, 2023: 1-2.
|
20. |
Kocełak P, Puzianowska-Kuźnicka M, Olszanecka-Glinianowicz M, et al. Wnt signaling pathway and sclerostin in the development of atherosclerosis and vascular calcification. Adv Clin Exp Med, 2024, 33(5): 519-532.
|
21. |
Leanza G, Cannata F, Faraj M, et al. Bone canonical Wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength. Elife, 2024, 12: RP90437.
|
22. |
González-Salvatierra S, García-Martín A, García-Fontana B, et al. Bone proteins are associated with cardiovascular risk according to the SCORE2-Diabetes algorithm. Cardiovasc Diabetol, 2024, 23(1): 311.
|
23. |
谭艳飞, 谭艳美, 梅琅. 血清骨硬化蛋白、内皮细胞特异性分子 1 与 2 型糖尿病亚临床动脉粥样硬化的关系. 中国动脉硬化杂志, 2022, 30(5): 410-415.
|
24. |
Liu H, Guo Y, Zhu R, et al. Fructus Ligustri Lucidi preserves bone quality through induction of canonical Wnt/β‐catenin signaling pathway in ovariectomized rats. Phytother Res, 2021, 35(1): 424-441.
|
25. |
Bovijn J, Krebs K, Chen CY, et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta‐analysis of clinical trials and human genetics. Sci Transl Med, 2020, 12(549): eaay6570.
|
26. |
Zhao B, Chen A, Wang H, et al. The relationship between sclerostin and carotid artery atherosclerosis in patients with stage 3-5 chronic kidney disease. Int Urol Nephrol, 2020, 52(7): 1329-1336.
|
27. |
周琳, 李世军. 冠心病与骨质疏松症共病的机制与治疗进展. 中国临床保健杂志, 2023, 26(5): 712-717.
|
28. |
Tsourdi E, Rachner TD, Hofbauer LC. Romosozumab versus alendronate and fracture risk in women with osteoporosis. N Engl J Med, 2018, 378(2): 195.
|
29. |
Holdsworth G, Staley JR, Hall P, et al. Sclerostin downregulation globally by naturally occurring genetic variants, or locally in atherosclerotic plaques, does not associate with cardiovascular events in humans. J Bone Miner Res, 2021, 36(7): 1326-1339.
|
30. |
Golledge J, Thanigaimani S. Role of sclerostin in cardiovascular disease. Arterioscler Thromb Vasc Biol, 2022, 42(7): e187-e202.
|
31. |
Movérare-Skrtic S, Voelkl J, Nilsson KH, et al. Ohlsson C. B4GALNT3 regulates glycosylation of sclerostin and bone mass. EBioMedicine, 2023, 91: 104546.
|