| 1. |
王书杰. 3D 打印纳米羟基磷灰石支架联合叶黄素在骨缺损修复中的应用研究. 南京: 南京农业大学, 2022.
|
| 2. |
张葆鑫. 3D 打印多孔锌支架联合生物活性血清外泌体在兔桡骨骨缺损修复中的研究. 苏州: 苏州大学, 2024.
|
| 3. |
刘嗣聪, 刘宏治, 殷亚然. 生物可降解聚酯/生物陶瓷 3D 打印骨组织工程支架研究进展. 复合材料学报, 2024, 41(4): 1672-1693.
|
| 4. |
刘天, 王臻, 储彬, 等. 人工软骨支架材料、结构设计与制备技术研究进展. 功能材料, 2023, 54(3): 3001-3011.
|
| 5. |
汪雪颖, 许建霞, 李岩. 3D 打印多孔钽表面改性及功能化研究进展. 表面技术, 2023, 52(7): 1-10, 54.
|
| 6. |
王树棋, 王亚明, 邹永纯, 等. 微弧氧化涂层微纳米孔调控及功能化应用研究进展. 表面技术, 2021, 50(6): 1-22.
|
| 7. |
Zhang Y, Sun N, Zhu M, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater Adv, 2022, 133: 112651.
|
| 8. |
Mukasheva F, Adilova L, Dyussenbinov A, et al. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front Bioeng Biotechnol, 2024, 12: 1444986.
|
| 9. |
邓富元. 3D 打印不同几何形状孔隙的钛合金支架对骨长入影响研究. 泸州: 西南医科大学, 2021.
|
| 10. |
王永成. 3D 打印多孔钛内植物的制备及其骨长入性能评估. 呼和浩特: 内蒙古自治区人民医院, 2019.
|
| 11. |
鲁斌. 3D 打印多孔钛合金支架孔隙结构对骨长入效果影响的动物实验研究. 衡阳: 南华大学, 2020.
|
| 12. |
邓威, 郑欣, 谌业帅, 等. 3D 打印多孔钛材料修复兔股骨髁骨缺损的实验研究. 实验动物与比较医学, 2017, 37(4): 266-272.
|
| 13. |
Luo K, Wang L, Chen X, et al. Biomimetic polyurethane 3D scaffolds based on polytetrahydrofuran glycol and polyethylene glycol for soft tissue engineering. Polymers (Basel), 2020, 12(11): 2631.
|
| 14. |
武琦, 李小康, 汤臻, 等. 3D 打印干骺端骨修复支架的生物力学优化设计. 医用生物力学, 2025, 40(2): 477-484.
|
| 15. |
何远怀. 羟基磷灰石/Ti-13Nb-13Zr 生物材料的制备和性能研究. 昆明: 昆明理工大学, 2018.
|
| 16. |
Arifin A, Sulong AB, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Design, 2014, 55: 165-175.
|
| 17. |
甄承栋. TPMS 多孔梯度支架的设计及其性能研究. 济南: 齐鲁工业大学, 2025.
|
| 18. |
Brett E, Flacco J, Blackshear C, et al. Biomimetics of bone implants: the regenerative road. Biores Open Access, 2017, 6(1): 1-6.
|
| 19. |
Magré J, Willemsen K, Kolken HMA, et al. Deformable titanium for acetabular revision surgery: a proof of concept. 3D Print Med, 2023, 9(1): 16.
|
| 20. |
Jarolimova P, Voltrova B, Blahnova V, et al. Mesenchymal stem cell interaction with Ti6Al4V alloy pre-exposed to simulated body fluid. RSC Adv, 2020, 10(12): 6858-6872.
|
| 21. |
Lee UL, Yun S, Lee H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications. Dent Mater, 2022, 38(10): 1648-1660.
|
| 22. |
Zhang J, Jiang Y, Shang Z, et al. Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies. Bioact Mater, 2021, 6(11): 4027-4052.
|
| 23. |
Ni R, Jing Z, Xiong C, et al. Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties. Ann Transl Med, 2022, 10(12): 710.
|
| 24. |
Ma XY, Ma TC, Feng YF, et al. Promotion of osteointegration under diabetic conditions by a silk fibroin coating on 3D-printed porous titanium implants via a ROS-mediated NF-κB pathway. Biomed Mater, 2021, 16(3): 035008.
|
| 25. |
Wang W, Xiong Y, Zhao R, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J Nanobiotechnology, 2022, 20(1): 68.
|
| 26. |
Yang S, Jiang W, Ma X, et al. Nanoscale morphologies on the surface of 3D-printed titanium implants for improved osseointegration: a systematic review of the literature. Int J Nanomedicine, 2023, 18: 4171-4191.
|
| 27. |
Jang HJ, Kang MS, Jang J, et al. Harnessing 3D printed highly porous Ti-6Al-4V scaffolds coated with graphene oxide to promote osteogenesis. Biomater Sci, 2024, 12(21): 5491-5503.
|
| 28. |
Cheng XQ, Xu W, Shao LH, et al. Enhanced osseointegration and antimicrobial properties of 3D-printed porous titanium alloys with copper-strontium doped calcium silicate coatings. J Biomater Appl, 2025, 39(6): 607-619.
|
| 29. |
Wu HY, Lin YH, Lee AK, et al. Combined effects of polydopamine-assisted copper immobilization on 3D-printed porous Ti6Al4V scaffold for angiogenic and osteogenic bone regeneration. Cells, 2022, 11(18): 2824.
|
| 30. |
Li Y, Li L, Ma Y, et al. 3D-printed titanium cage with PVA-vancomycin coating prevents surgical site infections (SSIs). Macromol Biosci, 2020, 20(3): e1900394.
|
| 31. |
Lee S, Park H, Yun HS, et al. Alginate beads encapsulating hydroxyapatite microparticle and BMP-2 for long bone defect regeneration: a pilot study. In Vivo, 2025, 39(2): 732-741.
|
| 32. |
Jiang H, Zhang M, Qu Y, et al. Therapeutic potential of nano-sustained-release factors for bone scaffolds. J Funct Biomater, 2025, 16(4): 136.
|
| 33. |
Jing Z, Yuan W, Wang J, et al. Erratum: simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater, 2024, 34: 463-465.
|
| 34. |
Li S, Cui Y, Liu H, et al. Dual-functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis. Mater Today Bio, 2024, 24: 100943.
|
| 35. |
吴子健, 胡昭端, 谢有琼, 等. 3D 打印技术与骨组织工程研究文献计量及研究热点可视化分析. 中国组织工程研究, 2021, 25(4): 564-569.
|
| 36. |
付君, 倪明, 陈继营, 等. 个性化 3D 打印多孔钛合金加强块重建重度髋臼骨缺损的早期临床疗效研究. 中华骨与关节外科杂志, 2018, 11(6): 401-407.
|
| 37. |
付君. 个性化 3D 打印多孔钛合金加强块重建重度髋臼骨缺损的应用基础及早期临床疗效研究. 北京: 中国人民解放军医学院, 2018.
|
| 38. |
Chen Z, Xing Y, Li X, et al. 3D-printed titanium porous prosthesis combined with the Masquelet technique for the management of large femoral bone defect caused by osteomyelitis. BMC Musculoskelet Disord, 2024, 25(1): 474.
|
| 39. |
Pu Y, Lin X, Zhi Q, et al. Microporous implants modified by bifunctional hydrogel with antibacterial and osteogenic properties promote bone integration in infected bone defects. J Funct Biomater, 2023, 14(4): 226.
|
| 40. |
Hunt JP, Begley MR, Block JE. Truss implant technology™ for interbody fusion in spinal degenerative disorders: profile of advanced structural design, mechanobiologic and performance characteristics. Expert Rev Med Devices, 2021, 18(8): 707-715.
|
| 41. |
Geng X, Li Y, Li F, et al. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: a minimum 2-year follow-up of 92 consecutive patients. J Orthop Surg Res, 2020, 15(1): 383.
|
| 42. |
张彦超, 李建军, 侯文韬, 等. 3D 打印多孔钛钢板一体化植入体修复髋臼后壁粉碎性骨折合并骨缺损的初步研究. 中国骨伤, 2019, 32(5): 469-474.
|
| 43. |
Berlinberg EJ, Kavian JA, Roof MA, et al. Minimum 2-year outcomes of a novel 3D-printed fully porous titanium acetabular shell in revision total hip arthroplasty. Arthroplast Today, 2022, 18: 39-44.
|
| 44. |
Wei X, Fan B, Chen X, et al. DAPT inhibits titanium particle-induced osteolysis by suppressing the RANKL/Notch2 signaling pathway. J Biomed Mater Res A, 2020, 108(11): 2150-2161.
|
| 45. |
He J, Xie M, Luo S, et al. Advanced dynamic slurry circulation system for precision 3D bioprinting of osteogenic ceramics: enhanced stability, mechanical performance optimization, and in vitro bioactivity validation. ACS Omega, 2025, 10(30): 32895-32906.
|
| 46. |
Wang X, Xin H, Ning X, et al. Strontium-loaded titanium implant with rough surface modulates osseointegration by changing sfrp4 in canonical and noncanonical Wnt signaling pathways. Biomed Mater, 2022, 17(3): 35012.
|
| 47. |
Li D, Tang G, Yao H, et al. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater, 2022, 16: 47-56.
|
| 48. |
Razzi F, Fratila-Apachitei LE, Fahy N, et al. Immunomodulation of surface biofunctionalized 3D printed porous titanium implants. Biomed Mater, 2020, 15(3): 035017.
|
| 49. |
Ma L, Zhou J, Wu Q, et al. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy. Biomaterials, 2023, 301: 122236.
|
| 50. |
Li Y, Qiao Y, Ma Y, et al. AI in fungal drug development: opportunities, challenges, and future outlook. Front Cell Infect Microbiol, 2025, 15: 1610743.
|
| 51. |
Li X, Zhou S, Liu X, et al. 3D microstructure reconstruction and characterization of porous materials using a cross-sectional SEM image and deep learning. Heliyon, 2024, 10(20): e39185.
|