1. |
Stovitz SD, Shrier I. Causal inference for clinicians. BMJ Evid Based Med, 2019, 24(3): 109-112.
|
2. |
Hernán MA, Robins JM. Causal inference: what if. Boca Raton: Chapman & Hall/CRC, 2024.
|
3. |
Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health, 2006, 60(7): 578-586.
|
4. |
Katz MH. Multivariable analysis: a primer for readers of medical research. Ann Intern Med, 2003, 138(8): 644-650.
|
5. |
袁驰, 周祎灵, 曹雨滋, 等. 基于真实世界数据的观察性研究因果推断——目标试验模拟实施要点及案例分析. 中国胸心血管外科临床杂志, 2024, 31(12): 1743-1752.
|
6. |
Fletcher RH, Fletcher SW, Fletcher GS. Clinical epidemiology: the essentials. 5 ed. Philadelphia: Lippincott Williams & Wilkins, 2012.
|
7. |
Pearl J. Causal diagrams for empirical research. Biometrika, 1995, 82(4): 669-688.
|
8. |
Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology, 1999, 10(1): 37-48.
|
9. |
Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins, 2008.
|
10. |
VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol, 2019, 34(3): 211-219.
|
11. |
VanderWeele TJ. On the distinction between interaction and effect modification. Epidemiology, 2009, 20(6): 863-871.
|
12. |
Bours MJL. Tutorial: A nontechnical explanation of the counterfactual definition of effect modification and interaction. J Clin Epidemiol, 2021, 134: 113-124.
|
13. |
Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream?. Epidemiology, 2006, 17(4): 360-372.
|
14. |
Ding P, VanderWeele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding. Biometrika, 2017, 104(2): 291-302.
|
15. |
Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology, 2004, 15(5): 615-625.
|
16. |
Sauer B, Brookhart MA, Roy JA, et al. Covariate selection// Velentgas P, Dreyer NA, Nourjah P, et al. Developing a protocol for observational comparative effectiveness research: a user’s guide. Agency for Healthcare Research and Quality (US), 2013.
|
17. |
安康, 秦恳, 李舍予, 等. 肥胖与绝经期女性居民骨密度的相关性研究. 四川大学学报(医学版), 2017, 48(1): 23-27.
|
18. |
秦恳, 何敏, 曹晓涛, 等. 肥胖与 50 岁以上男性骨质疏松的相关性研究. 四川大学学报(医学版), 2017, 48(1): 17-22.
|
19. |
Biondi-Zoccai G, Romagnoli E, Agostoni P, et al. Are propensity scores really superior to standard multivariable analysis?. Contemp Clin Trials, 2011, 32(5): 731-740.
|
20. |
Li G, Prior JC, Leslie WD, et al. Frailty and risk of fractures in patients with type 2 diabetes. Diabetes Care, 2019, 42(4): 507-513.
|
21. |
Shen Y, Shi Q, Zou X, et al. Time-dependent risk of fracture in adults with type 2 diabetes receiving anti-diabetic drug: a one-stage network meta-analysis. Diabetes Metab Res Rev, 2024, 40(2): e3780.
|
22. |
邹昕雨, 李舍予. 时间-事件结局证据合成中时间的效应修饰作用. 中国循证医学杂志, 2024, 24(3): 364-372.
|
23. |
Rutter GA, Chimienti F. SLC30A8 mutations in type 2 diabetes. Diabetologia, 2015, 58(1): 31-36.
|
24. |
Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130): 881-885.
|
25. |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA, 2017, 318(19): 1925-1926.
|
26. |
Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med, 1993, 118(3): 201-210.
|
27. |
Greenland S, Pearce N. Statistical foundations for model-based adjustments. Annu Rev Public Health, 2015, 36: 89-108.
|
28. |
Greenland S, Daniel R, Pearce N. Outcome modelling strategies in epidemiology: traditional methods and basic alternatives. Int J Epidemiol, 2016, 45(2): 565-575.
|
29. |
Weinberg CR. Toward a clearer definition of confounding. Am J Epidemiol, 1993, 137(1): 1-8.
|
30. |
Walter S, Tiemeier H. Variable selection: current practice in epidemiological studies. Eur J Epidemiol, 2009, 24(12): 733-736.
|
31. |
Talbot D, Massamba VK. A descriptive review of variable selection methods in four epidemiologic journals: there is still room for improvement. Eur J Epidemiol, 2019, 34(8): 725-730.
|
32. |
Staerk C, Byrd A, Mayr A. Recent methodological trends in epidemiology: no need for data-driven variable selection?. Am J Epidemiol, 2024, 193(2): 370-376.
|
33. |
Ramspek CL, Steyerberg EW, Riley RD, et al. Prediction or causality? A scoping review of their conflation within current observational research. Eur J Epidemiol, 2021, 36(9): 889-898.
|
34. |
Rassen JA, Glynn RJ, Brookhart MA, et al. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol, 2011, 173(12): 1404-1413.
|
35. |
Hernán MA, Hernández-Díaz S, Werler MM, et al. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol, 2002, 155(2): 176-184.
|
36. |
Greenland S. Modeling and variable selection in epidemiologic analysis. Am J public Health, 1989, 79(3): 340-349.
|
37. |
Greenland S, Neutra R. Control of confounding in the assessment of medical technology. Int J Epidemiol, 1980, 9(4): 361-367.
|
38. |
Talbot D, Diop A, Lavigne-Robichaud M, et al. The change in estimate method for selecting confounders: a simulation study. Stat Methods Med Res, 2021, 30(9): 2032-2044.
|
39. |
Ferguson KD, McCann M, Katikireddi SV, et al. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs. Int J Epidemiol, 2020, 49(1): 322-329.
|
40. |
Rubin DB. Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups?. Stat Med, 2009, 28(9): 1420-1423.
|
41. |
Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat, 2008, 2(3): 808-840.
|
42. |
Textor J, Van Der Zander B, Gilthorpe MS, et al. Robust causal inference using directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol, 2016, 45(6): 1887-1894.
|
43. |
Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res Methodol, 2008, 8: 70.
|
44. |
Howards PP, Schisterman EF, Poole C, et al. “Toward a clearer definition of confounding” revisited with directed acyclic graphs. Am J Epidemiol, 2012, 176(6): 506-511.
|
45. |
Tennant PWG, Murray EJ, Arnold KF, et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations. Int J Epidemiol, 2021, 50(2): 620-632.
|
46. |
Rueegg CS. Directed acyclic graphs to foster transparency and scientific dialogue. Lancet Oncol, 2024, 25(6): 693-694.
|
47. |
Armond ACV, Cobey KD, Moher D. Key concepts in clinical epidemiology: research integrity definitions and challenges. J Clin Epidemiol, 2024, 171: 111367.
|
48. |
Richardson TS, Robins JM. Single world intervention graphs: a primer[C]//Second UAI workshop on causal structure Learning. Bellevue, Washington, 2013.
|
49. |
Ocampo A, Bather JR. Single-world intervention graphs for defining, identifying, and communicating estimands in clinical trials. Stat Med, 2023, 42(21): 3892-3902.
|
50. |
Breskin A, Cole SR, Hudgens MG. A practical example demonstrating the utility of single-world intervention graphs. Epidemiology, 2018, 29(3): e20-e21.
|
51. |
Didelez V. Invited commentary: where do the causal DAGS come from?. Am J Epidemiol, 2024, 193(8): 1075-1078.
|
52. |
Petersen AH, Ekstrøm CT, Spirtes P, et al. Constructing causal life-course models: comparative Study of data-driven and theory-driven approaches. Am J Epidemiol, 2023, 192(11): 1917-1927.
|