| 1. |
Jaff MR. Venous thromboembolic disease. Ochsner J, 2002, 4(1): 6-8.
|
| 2. |
刘蕾, 马壮. 《医院内静脉血栓栓塞症防治质量评价与管理指南(2022 版)》解读. 西部医学, 2023, 35(9): 1249-1251.
|
| 3. |
Sun S, Urbanus RT, Ten Cate H, et al. Platelet activation mechanisms and consequences of immune thrombocytopenia. Cells, 2021, 10(12): 3386.
|
| 4. |
Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Haematol. 2008, 143(2): 180-190.
|
| 5. |
Kaiser R, Dewender R, Mulkers M, et al. Procoagulant platelet activation promotes venous thrombosis. Blood, 2024, 144(24): 2546-2553.
|
| 6. |
Chu Y, Guo H, Zhang Y, et al. Procoagulant platelets: generation, characteristics, and therapeutic target. J Clin Lab Anal, 2021, 35(5): e23750.
|
| 7. |
Warkentin TE. Platelet-activating anti-PF4 disorders: an overview. Semin Hematol, 2022, 59(2): 59-71.
|
| 8. |
Bekendam RH, Ravid K. Mechanisms of platelet activation in cancer-associated thrombosis: a focus on myeloproliferative neoplasms. Front Cell Dev Biol, 2023, 11: 1207395.
|
| 9. |
Patalakh I, Revka O, Gołaszewska A, et al. Integration of clotting and fibrinolysis: central role of platelets and factor XIIIa. Biosci Rep, 2024, 44(9): BSR20240332.
|
| 10. |
Cosemans JM, Angelillo-Scherrer A, Mattheij NJ, et al. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res, 2013, 99(2): 342-352.
|
| 11. |
Gao X, Zhang T, Huang X, et al. Impact of rise and fall phases of shear on platelet activation and aggregation using microfluidics. J Thromb Thrombolysis, 2024, 57(4): 576-586.
|
| 12. |
Chen J, López JA. Interactions of platelets with subendothelium and endothelium. Microcirculation, 2005, 12(3): 235-246.
|
| 13. |
Tarantino E, Amadio P, Squellerio I, et al. Role of thromboxane-dependent platelet activation in venous thrombosis: Aspirin effects in mouse model. Pharmacol Res, 2016, 107: 415-425.
|
| 14. |
Heestermans M, Salloum-Asfar S, Streef T, et al. Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood, 2019, 133(19): 2090-2099.
|
| 15. |
Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood, 2014, 123(18): 2768-2776.
|
| 16. |
Subramaniam S, Jurk K, Hobohm L, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood, 2017, 129(16): 2291-2302.
|
| 17. |
Wiedmer T, Sims PJ. Participation of protein kinases in complement C5b-9-induced shedding of platelet plasma membrane vesicles. Blood, 1991, 78(11): 2880-2886.
|
| 18. |
倪舒婵, 孙杰. 半乳糖凝集素-3 与肺栓塞相关性的研究进展. 临床肺科杂志, 2025, 30(5): 799-801, 805.
|
| 19. |
Chen Y, Fu W, Zheng Y. Galectin 3 enhances platelet aggregation and thrombosis via dectin-1 activation: a translational study. Eur Heart J, 2022, 43(37): 3556-3574.
|
| 20. |
Wang X, Liu B, Xu M, et al. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb Res, 2021, 200: 72-80.
|
| 21. |
Suzuki-Inoue K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood, 2019, 134(22): 1912-1918.
|
| 22. |
Saller F, Burnier L, Schapira M. Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization. Blood Cells Mol Dis, 2006, 36(3): 373-378.
|
| 23. |
Yang J, Zhou X, Fan X, et al. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation. Blood, 2016, 128(5): 615-624.
|
| 24. |
Akrivou D, Perlepe G, Kirgou P, et al. Pathophysiological aspects of aging in venous thromboembolism: an update. Medicina (Kaunas), 2022, 58(8): 1078.
|
| 25. |
Wang Q, Zennadi R. Oxidative stress and thrombosis during aging: the roles of oxidative stress in RBCs in venous thrombosis. Int J Mol Sci, 2020, 21(12): 4259.
|
| 26. |
Lood C, Tydén H, Gullstrand B, et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PloS One, 2014, 9(6): e99386.
|
| 27. |
Iba T, Wada H, Levy JH. Platelet activation and thrombosis in COVID-19. Semin Thromb Hemost, 2023, 49(1): 55-61.
|
| 28. |
Schattner M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response. J Leukoc Biol, 2019, 105(5): 873-880.
|
| 29. |
Camilli G, Eren E, Williams DL, et al. Impaired phagocytosis directs human monocyte activation in response to fungal derived β-glucan particles. Eur J Immunol, 2018, 48(5): 757-770.
|
| 30. |
Woth G, Tőkés-Füzesi M, Magyarlaki T, et al. Activated platelet-derived microparticle numbers are elevated in patients with severe fungal (Candida albicans) sepsis. Ann Clin Biochem, 2012, 49(Pt 6): 554-560.
|
| 31. |
Chung T, Connor D, Joseph J, et al. Platelet activation in acute pulmonary embolism. J Thromb Haemost, 2007, 5(5): 918-924.
|
| 32. |
张蕴鑫, 刘建龙, 贾伟, 等. P-选择素、溶酶体颗粒糖蛋白、血小板活化因子和血浆 D-二聚体水平与下肢深静脉血栓形成的关系. 中国老年学杂志, 2017, 37(5): 1221-1223.
|
| 33. |
Sevuk U, Bahadir MV, Altindag R, et al. Value of serial platelet indices measurements for the prediction of pulmonary embolism in patients with deep venous thrombosis. Ther Clin Risk Manag, 2015, 11: 1243-1249.
|
| 34. |
贾亚男, 王雅琼, 郭立新, 等. 阿替普酶联合利伐沙班治疗老年肥胖患者急性下肢深静脉血栓的临床研究. 中国临床药理学杂志, 2024, 40(20): 2939-2943.
|
| 35. |
Preston RJS, O’Sullivan JM, O’Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol, 2019, 186(1): 13-23.
|