| 1. |
国家卫生健康委员会. 产前诊断技术管理办法. 北京: 国家卫生健康委员会, 2002.
|
| 2. |
染色体微阵列分析技术在产前诊断中的应用协作组. 染色体微阵列分析技术在产前诊断中的应用专家共识. 中华妇产科杂志, 2014, 49(8): 570-572.
|
| 3. |
全外显子组测序技术在产前诊断中的应用协作组. 全外显子组测序技术在产前诊断中应用的专家共识. 中华医学遗传学杂志, 2022, 39(5): 457-463.
|
| 4. |
刘杏, 杨寅, 葛一平, 等. 人工智能在临床基因组学中的应用进展. 中国医学科学院学报. 2021, 43(6): 950-955.
|
| 5. |
罗红, 李胜利, 邓学东, 等. 中国产前超声诊断 40 年: 技术演进、临床突破与未来发展. 中国医学影像技术, 2025, 41(8): 1333-1339.
|
| 6. |
刘俊涛, 周婧文. 继往开来, 行稳致远: 我国产前筛查诊断发展历程回顾与展望. 中华围产医学杂志, 2023, 26(11): 919-924.
|
| 7. |
Zhu Y, Chau MHK, Wang H, et al. Clinical validation of artificial intelligence-assisted karyotyping on peripheral blood in a cytogenetic diagnostic laboratory. Hum Genet, 2025, 144(11/12): 1269-1276.
|
| 8. |
Yang C, Li T, Dong Q, et al. Chromosome classification via deep learning and its application to patients with structural abnormalities of chromosomes. Med Eng Phys, 2023, 121: 104064.
|
| 9. |
Vylala A, Plakkottu Radhakrishnan B, Balakrishnan Kadan A. Early prediction and risk analysis using hybrid deep learning techniques in multimodal biomedical image. Dev Neurobiol, 2025, 85(4): e23001.
|
| 10. |
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell, 2019, 176(3): 535-548.e24.
|
| 11. |
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet, 2016, 99(4): 877-885.
|
| 12. |
Pounraja VK, Jayakar G, Jensen M, et al. A machine-learning approach for accurate detection of copy number variants from exome sequencing. Genome Res, 2019, 29(7): 1134-1143.
|
| 13. |
Özden F, Alkan C, Çiçek AE. Polishing copy number variant calls on exome sequencing data via deep learning. Genome Res, 2022, 32(6): 1170-1182.
|
| 14. |
Tan R, Shen Y. Accurate in silico confirmation of rare copy number variant calls from exome sequencing data using transfer learning. Nucleic Acids Res, 2022, 50(21): e123.
|
| 15. |
Melidis DP, Landgraf C, Schmidt G, et al. GenOtoScope: towards automating ACMG classification of variants associated with congenital hearing loss. PLoS Comput Biol, 2022, 18(9): e1009785.
|
| 16. |
Li W, Li X, Lavallee E, et al. From text to translation: using language models to prioritize variants for clinical review. medRxiv, 2025: 2024.12. 31.24319792.
|
| 17. |
Yang J, Liu C, Deng W, et al. Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT. Patterns (N Y), 2023, 5(1): 100887.
|
| 18. |
Dias R, Ali Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med, 2019, 11(1): 70.
|
| 19. |
De La Vega FM, Chowdhury S, Moore B, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med, 2021, 13(1): 153.
|
| 20. |
Ménard T. Good quality practices for artificial intelligence in genetics. Eur J Hum Genet, 2022, 30(9): 993-995.
|
| 21. |
Youssef A, Pencina M, Thakur A, et al. External validation of AI models in health should be replaced with recurring local validation. Nat Med, 2023, 29(11): 2686-2687.
|
| 22. |
Walton NA, Nagarajan R, Wang C, et al. Enabling the clinical application of artificial intelligence in genomics: a perspective of the AMIA Genomics and Translational Bioinformatics Workgroup. J Am Med Inform Assoc, 2024, 31(2): 536-541.
|
| 23. |
Diniz PHB, Yin Y, Collins S. Deep learning strategies for ultrasound in pregnancy. Eur Med J Reprod Health, 2020, 6(1): 73-80.
|
| 24. |
Feng J, Kim YK, Liu P. Image shadow detection and removal based on region matching of intelligent computing. Comput Intell Neurosci, 2022, 2022: 7261551.
|
| 25. |
Codaccioni C, Arthuis C, Deloison B, et al. Offline ultrasound-MRI fusion imaging for assessment of normal fetal brain development. Ultrasound Obstet Gynecol, 2025, 66(4): 509-517.
|
| 26. |
Lei T, Zheng Q, Feng J, et al. Enhancing trainee performance in obstetric ultrasound through an artificial intelligence system: randomized controlled trial. Ultrasound Obstet Gynecol, 2024, 64(4): 453-462.
|
| 27. |
Mao D, Liu C, Wang L, et al. AI-MARRVEL - a knowledge-driven AI system for diagnosing mendelian disorders. NEJM AI, 2024, 1(5): 10.1056/aioa2300009.
|
| 28. |
Liang L, Chen Y, Wang T, et al. Genetic transformer: an innovative large language model driven approach for rapid and accurate identification of causative variants in rare genetic diseases. medRxiv, 2024: 2024.07. 18.24310666.
|
| 29. |
Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med, 2020, 3: 119.
|
| 30. |
Teo ZL, Jin L, Li S, et al. Federated machine learning in healthcare: a systematic review on clinical applications and technical architecture. Cell Rep Med, 2024, 5(2): 101419.
|
| 31. |
Chappell J, Aughwane R, Clark AR, et al. A review of feto-placental vasculature flow modelling. Placenta, 2023, 142: 56-63.
|