| 1. |
Markus HS, de Leeuw FE. Cerebral small vessel disease: recent advances and future directions. Int J Stroke, 2023, 18(1): 4-14.
|
| 2. |
Mok VCT, Cai Y, Markus HS. Vascular cognitive impairment and dementia: mechanisms, treatment, and future directions. Int J Stroke, 2024, 19(8): 838-856.
|
| 3. |
van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Primers, 2018, 4: 18003.
|
| 4. |
Zhi N, Ren R, Qi J, et al. The China Alzheimer Report 2025. Gen Psychiatr, 2025, 38(4): e102020.
|
| 5. |
Di Minno A, Gelzo M, Stornaiuolo M, et al. The evolving landscape of untargeted metabolomics. Nutr Metab Cardiovasc Dis, 2021, 31(6): 1645-1652.
|
| 6. |
Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, et al. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom, 2016, 27(12): 1897-1905.
|
| 7. |
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, et al. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol, 2022, 20(3): 143-160.
|
| 8. |
Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol, 2023, 22(7): 602-618.
|
| 9. |
胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识 2021. 中国卒中杂志, 2021, 16(7): 716-726.
|
| 10. |
中国卒中学会血管性认知障碍分会. 中国血管性认知障碍诊治指南 (2024 版). 中华医学杂志, 104 (31): 2881-2894.
|
| 11. |
Sagar Y, Saborni M, Swapnil Mundhe, et al. Metabolomic profiling unravels the role of sphingolipid pathways in spot blotch resistance in wheat. Acta Physiologiae Plantarum, 2025, 47(67): 67.
|
| 12. |
Triba MN, Le Moyec L, Amathieu R, et al. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst, 2015, 11(1): 13-19.
|
| 13. |
Blaženović I, Kind T, Ji J, et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites, 2018, 8(2): 31.
|
| 14. |
Bordes C, Sargurupremraj M, Mishra A, et al. Genetics of common cerebral small vessel disease. Nat Rev Neurol, 2022, 18(2): 84-101.
|
| 15. |
van den Brink H, Doubal FN, Duering M. Advanced MRI in cerebral small vessel disease. Int J Stroke, 2023, 18(1): 28-35.
|
| 16. |
Naamneh Elzenaty R, du Toit T, Flück CE. Basics of androgen synthesis and action. Best Pract Res Clin Endocrinol Metab, 2022, 36(4): 101665.
|
| 17. |
Francis JC, Swain A. Prostate Organogenesis. Cold Spring Harb Perspect Med, 2018, 8(7): a030353.
|
| 18. |
Lopes RA, Neves KB, Carneiro FS, et al. Testosterone and vascular function in aging. Front Physiol, 2012, 3: 89.
|
| 19. |
Chen L, Xu YX, Wang YS, et al. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer, 2024, 23(1): 229.
|
| 20. |
Malkin CJ, Pugh PJ, Jones RD, et al. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab, 2004, 89(7): 3313-3318.
|
| 21. |
Cittadini A, Isidori AM, Salzano A. Testosterone therapy and cardiovascular diseases. Cardiovasc Res, 2022, 118(9): 2039-2057.
|
| 22. |
Salvemini D, Little JW, Doyle T, et al. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med, 2011, 51(5): 951-966.
|
| 23. |
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol, 2024, 25(10): 802-821.
|
| 24. |
Adebayo D, Obaseki E, Vasudeva K, et al. Sphingolipid and methionine metabolism in aging. J Cell Sci, 2025, 138(21): jcs264026.
|
| 25. |
Qin Q, Yin Y, Xing Y, et al. Lipid metabolism in the development and progression of vascular cognitive impairment: a systematic review. Front Neurol, 2021, 12: 709134.
|
| 26. |
Liu Y, Chan DKY, Thalamuthu A, et al. Plasma lipidomic biomarker analysis reveals distinct lipid changes in vascular dementia. Comput Struct Biotechnol J, 2020, 18: 1613-1624.
|
| 27. |
Tong B, Ba Y, Li Z, et al. Targeting dysregulated lipid metabolism for the treatment of Alzheimer’s disease and Parkinson’s disease: current advancements and future prospects. Neurobiol Dis, 2024, 196: 106505.
|
| 28. |
Gengatharan JM, Handzlik MK, Chih ZY, et al. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab, 2025, 37(1): 274-290. e279.
|
| 29. |
O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol, 2016, 16(9): 553-565.
|
| 30. |
Wang N, Lu S, Cao Z, et al. Pyruvate metabolism enzyme DLAT promotes tumorigenesis by suppressing leucine catabolism. Cell Metab, 2025, 37(6): 1381-1399. e1389.
|
| 31. |
Han M, Bushong EA, Segawa M, et al. Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature, 2023, 615(7953): 712-719.
|
| 32. |
Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab, 2016, 24(1): 158-166.
|
| 33. |
Li Q, Weiss K, Niwa F, et al. Leucine inhibits degradation of outer mitochondrial membrane proteins to adapt mitochondrial respiration. Nat Cell Biol, 2025, 27(11): 1889-1901.
|
| 34. |
Sorrentino V, Romani M, Mouchiroud L, et al. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature, 2017, 552(7684): 187-193.
|
| 35. |
Boos F, Krämer L, Groh C, et al. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol, 2019, 21(4): 442-451.
|