| 1. |
中华医学会麻醉学分会. 日间手术麻醉指南. 中华医学杂志, 2023, 103(43): 3462-3471.
|
| 2. |
孙德峰. 日间手术麻醉规范化管理策略. 实用医学杂志, 2024, 40(3): 283-288.
|
| 3. |
光奇, 王建林, 王康太, 等. 基于交互设计信息系统的智能化日间手术全流程管理探索. 华西医学, 2023, 38(9): 1380-1385.
|
| 4. |
严蓉, 高巨, 束余声, 等. 麻醉科门诊建设与管理: 实践与思考. 中华麻醉学杂志, 2022, 42(3): 358-361.
|
| 5. |
田梦, 孙忠良, 孙德峰. 日归手术麻醉的规范化管理. 华西医学, 2022, 37(2): 165-170.
|
| 6. |
蒋丽莎, 李文畅, 马洪升. 基于异构数据学习的日间腹腔镜胆囊切除术患者准入模型探索. 华西医学, 2024, 39(2): 300-303.
|
| 7. |
Liu R, Stone TAD, Raje P, et al. Development and multicentre validation of the FLEX score: personalised preoperative surgical risk prediction using attention-based ICD-10 and current procedural terminology set embeddings. Br J Anaesth, 2024, 132(3): 607-615.
|
| 8. |
Heidegger T, Ghulam A, Bischoff M, et al. Beyond artificial intelligence: a critical appraisal from an airway management perspective. Anesth Analg, 2025, 140(5): 1111-1113.
|
| 9. |
胡小义, 王迪, 纪木火, 等. 机器学习在麻醉学领域的应用前景. 临床麻醉学杂志, 2024, 40(6): 634-638.
|
| 10. |
杨展眉, 唐之音, 刘洪涛. 人工智能在预测困难气道方面的研究进展. 中国医药, 2025, 20(10): 1578-1582.
|
| 11. |
Hayasaka T, Kawano K, Kurihara K, et al. Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study. J Intensive Care, 2021, 9(1): 38.
|
| 12. |
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine. N Engl J Med, 2023, 388(13): 1201-1208.
|
| 13. |
Rupp S, Ahrens E, Rudolph MI, et al. Development and validation of an instrument to predict prolonged length of stay in the postanesthesia care unit following ambulatory surgery. Can J Anaesth, 2023, 70(12): 1939-1949.
|
| 14. |
徐桂容, 柏斗胜, 王霄霖, 等. 基于智慧信息大数据平台助推全院日间手术服务高质量发展. 华西医学, 2023, 38(2): 278-283.
|
| 15. |
Gabriel RA, Harjai B, Simpson S, et al. Machine learning-based models predicting outpatient surgery end time and recovery room discharge at an ambulatory surgery center. Anesth Analg, 2022, 135(1): 159-169.
|
| 16. |
Shah A, Dhiman P. Artificial intelligence in peri-operative prediction model research: are we there yet?. Anaesthesia, 2024, 79(10): 1017-1022.
|
| 17. |
Shimada K, Inokuchi R, Ohigashi T, et al. Artificial intelligence-assisted interventions for perioperative anesthetic management: a systematic review and meta-analysis. BMC Anesthesiol, 2024, 24(1): 306.
|
| 18. |
吴飞, 张冉, 孙卫格, 等. 远程健康教育在日间手术患者中的应用研究进展. 中国卫生质量管理, 2024, 31(9): 43-47.
|
| 19. |
武汉大学人民医院(湖北省人民医院). 人工智能的个性化内镜检查预约兼术前宣教方法及系统: 中国, CN202311398120.7. 2024-01-05.
|
| 20. |
Laferrière-Langlois P, Morisson L, Jeffries S, et al. Depth of anesthesia and nociception monitoring: current state and vision for 2050. Anesth Analg, 2024, 138(2): 295-307.
|
| 21. |
Tu Z, Jeffries S, Pelletier E, et al. Deep reinforcement learning for multi-targets propofol dosing. J Clin Monit Comput, 2025, 39(3): 613-623.
|
| 22. |
佘守章, 俞卫锋. 加强临床监测智能化研究提升患者围麻醉手术期安全性. 中华麻醉学杂志, 2023, 43(7): 778-780.
|
| 23. |
Hatib F, Jian Z, Buddi S, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology, 2018, 129(4): 663-674.
|
| 24. |
Wijnberge M, van der Ster BJP, et al. Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms: a cohort study. Eur J Anaesthesiol, 2021, 38(6): 609-615.
|
| 25. |
Hua C, Chu Y, Zhou M, et al. Predictive effect of postoperative recovery in general anesthesia patients using interpretable models based on swarm intelligence machine learning. Front Physiol, 2025, 16: 1565548.
|
| 26. |
Cascella M, Schiavo D, Cuomo A, et al. Artificial intelligence for automatic pain assessment: research methods and perspectives. Pain Res Manag, 2023, 2023: 6018736.
|
| 27. |
van de Sande D, van Genderen ME, Verhoef C, et al. Optimizing discharge after major surgery using an artificial intelligence-based decision support tool (DESIRE): an external validation study. Surgery, 2022, 172(2): 663-669.
|
| 28. |
Romero-Brufau S, Wyatt KD, Boyum P, et al. Implementation of artificial intelligence-based clinical decision support to reduce hospital readmissions at a regional hospital. Appl Clin Inform, 2020, 11(4): 570-577.
|
| 29. |
Rajala M, Kääriäinen M, Tanhua A, et al. Patients’ perspectives on postoperative follow-up calls in day surgery: a qualitative study. Scand J Caring Sci, 2025, 39(3): e70077.
|
| 30. |
孟婧文, 安璐, 郝欣欣, 等. 日间手术随访方式的研究进展. 北京医学, 2023, 45(9): 822-825.
|
| 31. |
Kurtz SM, Higgs GB, Chen Z, et al. Patient perceptions of wearable and smartphone technologies for remote outcome monitoring in patients who have hip osteoarthritis or arthroplasties. J Arthroplasty,2022, 37(7S): S488-S492. e2.
|
| 32. |
Jung SJ, Kim JH, Rhee SJ. Home-based rehabilitation using wearable motion tracker with smart phone application feedback is as effective as conventional self-directed rehabilitation after total knee arthroplasty: randomized controlled trial. BMC Sports Sci Med Rehabil, 2025, 17(1): 370.
|
| 33. |
Gordon AM, Nian P, Baidya J, et al. Randomized controlled studies on smartphone applications and wearable devices for postoperative rehabilitation after total knee arthroplasty: a systematic review. J Arthroplasty, 2025; 40(8): 2204-2213. e1.
|
| 34. |
董兰, 胡娟娟, 吕君, 等. 智能急诊预检分诊信息化系统实践. 解放军医院管理杂志, 2019, 26(1): 69-71, 93.
|
| 35. |
Ahn S, Jung S, Park JH, et al. Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: in-hospital setting. Resuscitation, 2024, 202: 110325.
|