MA Lu 1 , TIAN Meng 1,2
  • 1. Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
  • 2. Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
TIAN Meng, Email: 6744710@qq.com
Export PDF Favorites Scan Get Citation

Objective To introduce an injectable andin situ gelling gelatin hydrogel, and to explore the possibility as a carrier for demineralized bone matrix (DBM) powder delivery. Methods First, thiolated gelatin was prepared and the thiol content was determined by Ellman method, and then the injectable andin situ gelling gelatin hydrogel (Gel) was formed by crosslinking of the thiolated gelatin and poly (ethylene oxide) diacrylate and the gelation time was determined by inverted method. Finally, the DBM-Gel composite was prepared by mixing Gel and DBM powder. The cytotoxicity was tested by live/dead staining and Alamar blue assay of the encapsulated cells in the DBM-Gel. Forin vitro cell induction, C2C12 cells were firstly incubated onto the surface of the DBM and then the composite was prepared. The experiment included two groups: DBM-Gel and DBM. The alkaline phosphatase (ALP) activity was determined at 1, 3, 5,and 7 days after culture.In vivo osteoinductivity was evaluated using ectopic bone formation model of nude rats. Histological observation and the ALP activity was measured in DBM-Gel and DBM groups at 4 weeks after implantation. Results The thiol content in the thiolated gelatin was (0.51±0.03) mmol/g determined by Ellman method. The gelation time of the hydrogel was (6±1) minutes. DBM powder can be mixed with the hydrogel and injected into the implantation site within the gelation time. The cells in the DBM-Gel exhibited spreading morphology and connected each other in part with increasing culture time. The viability of the cells was 95.4%±1.9%, 97.3%±1.3%, and 96.1%±1.6% at 1, 3, and 7 days after culture, respectively. The relative proliferation was 1.0±0.0, 1.1±0.1, 1.5±0.1, and 1.6±0.1 at 1, 3, 5, and 7 days after culture respectively.In vitro induction showed that the ALP activity of the DBM-Gel group was similar to that of the DBM group, showing no significant difference (P>0.05). With increasing culture time, the ALP activities in both groups increased gradually and the activity at 5 and 7 days was significantly higher than that at 1 and 3 days (P<0.05), while there was no significant difference between at 1 and 3 days, and between 5 and 7 days (P>0.05). At 4 weeks after implantationin vivo, new bone and cartilage were observed, but no bone marrow formation in DBM-Gel group; in DBM group, new bone, new cartilage, and bone marrow formation were observed. The histological osteoinduction scores of DBM-Gel and DBM groups were 4.0 and 4.5, respectively. The ALP activities of DBM-Gel and DBM groups were respectively (119.4±22.7) and (146.7±13.0) μmol/mg protein/min, showing no significant difference (t=–2.085,P=0.082). Conclusion The injectable andin situ gelling gelatin hydrogel for delivery of DBM is feasible.

Citation: MA Lu, TIAN Meng. Feasibility of an injectable andin situ gelling gelatin hydrogel for demineralized bone matrix powder delivery . Chinese Journal of Reparative and Reconstructive Surgery, 2017, 31(3): 300-305. doi: 10.7507/1002-1892.201611113 Copy

Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved

  • Previous Article

    Expression of Sclerostin in medial and lateral subchondral bone of the varus osteoarthritic knee plateau
  • Next Article

    Modification of calcium sulfate bone cement by gentamicin and oxygen-carboxymethylated chitosan